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SOME APPLICATIONS OF q-DIFFERENTIAL OPERATOR

Jian-Ping Fang

Abstract. In this paper, we use q-differential operator to recover the
finite Heine 2Φ1 transformations given in [3]. Applying that, we also
obtain some terminating q-series transformation formulas.

1. Introduction

Recently, G. E. Andrews [3] derived several finite Heine 2Φ1 transformations
from the terminating Sears 3Φ2 transformation. Then he used them to give two
finite Rogers-Ramanujan type identities. In this paper, by using the properties
of q-differential operators, we also obtain the finite Heine 2Φ1 transformation
and the following finite q-series transformations

(1)
M∑

j=0

[
M
j

]
(−1)jq(

j
2)+2j 1

1− a1qj
=

(q; q)M

(a1; q)M+1

M∑

j=0

(a1; q)jq
j ,

(2)
M∑

k=0

(−1)kqk2
(−q; q2)k

(q4; q4)k(q2; q2)M−k
=

(q; q2)M

(q4; q4)M
,

(3)
M∑

k=0

qk2−sk(−qs; q2)k

(q; q)2k(q2; q2)M−k
=

(−q1−s; q2)M

(q; q)2M
, s = 0, 1,
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M∑

k=0

q3k2−sk

(q2−(1−s); q2)k(q4−2s; q4)k(q2; q2)M−k

=
1

(−q2−s; q2)M

M∑

k=0

qk2+(1−s)k

(q; q)2k(q2; q2)M−k
, s = 0, 1,

(4)

where

(a; q)0 = 1, (a; q)n =
n−1∏

k=0

(1− aqk), n = 1, 2, . . .

and

(a; q)∞ =
∞∏

k=0

(1− aqk).

As M →∞, the second identity reduces to the identity appearing in [14, p.
152, Eq. (4)] (or [13, p. 99, Eq. (A.4)]). If s = 0, M →∞, the third tends to
the identity appearing in Slater’s paper [14, p. 156, Eq. (47)] (or [4, p. 252,
Eq. (11.2.1)], [13, p. 104, Eq. (A.47)]).

Throughout the paper, we take 0 < |q| < 1. And we also use the following
notations

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,
[
a1, a2, . . ., ar

b1, b2, . . ., bs
; q

]

n

=
(a1, a2, . . . , ar; q)n

(b1, b2, . . . , bs; q)n
,

rΦs

(
a1, . . ., ar

b1, . . ., bs
; q, x

)

=
∞∑

n=0

[
a1, a2, . . ., ar

q, b1, . . ., bs
; q

]

n

[
(−1)nqn(n−1)/2

]1+s−r

xn,

and [
n
k

]
=

(q; q)n

(q; q)k(q; q)n−k
.

2. Some lemmas

Recall that the q-differential operator Dq and q-shifted operator η (cf. [6, 7,
10-12]), acting on the variable x, are defined by:

Dq {f(x)} =
f(x)− f(xq)

x
and η {f(x)} = f(xq).

We can prove, by means of induction, the explicit formulae (cf. [10, 11])

(5) Dq
n

{
(xω; q)∞
(xs; q)∞

}
= sn (ω/s; q)n(xωqn; q)∞

(xs; q)∞
,
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(6) Dn
q {f(x)} = x−n

n∑

k=0

qk (q−n; q)k

(q; q)k
f(qkx)

and the q-Leibniz rule for the product of two functions

(7) Dn
q {f(x)g(x)} =

n∑

k=0

[
n
k

]
qk(k−n)Dk

q {f(x)}Dn−k
q

{
g(xqk)

}
.

In [6, 7], we have constructed the following q-exponential operator

(8) 1Φ0

(
b
−; q, cDq

)
=

∞∑
n=0

(b; q)n(cDq)n

(q; q)n
,

and gave some applications of it. In this paper, we will use the case of b = q−M ,

(9) 1Φ0

(
q−M

− ; q, cDq

)
=

M∑
n=0

(q−M ; q)n(cDq)n

(q; q)n

and the following more general finite q-exponential operator

(10) 2Φ1

(
q−M , a1

b1
; q, cDq

)
=

M∑
n=0

[
q−M , a1

q, b1
; q

]

n

(cDq)n,

where M is a non-negative integer.

Letting

F (x) =
[
xc1, xc2, . . ., xcr

xd1, xd2, . . ., xdr
; q

]

∞
,

from (6), we have:

Lemma 2.1. For complex numbers x, ai, bi, i = 1, 2, . . . , r,

(11) Dn
q {F (x)} = x−nF (x)

n∑

k=0

[
q−n, xd1, xd2, . . . , xdr

q, xc1, xc2, . . . , xcr
; q

]

k

qk.

From (7) and (9), we obtain the next lemma.

Lemma 2.2. We have

1Φ0

(
q−M

− ; q, cDq

){
(c1x; q)∞

(d1x, d2x)∞

}

= (cd2q
−M ; q)M

(c1x; q)∞
(d1x, d2x)∞

3Φ2

(
q−M , c1/d1, xd2

cd2q
−M , xc1

; q, cd1

)
.

(12)

The identity above is a special case of an identity in [6, p. 21, Eq. (7)].
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Lemma 2.3. If c = q/d2, then

2Φ1

(
q−M , a1

b1
; q, cDq

){
(c1x; q)∞

(d1x, d2x)∞

}

= aM
1

(b1/a1; q)M

(b1; q)M

(c1x; q)∞
(d1x, d2x)∞

4Φ2

(
q−M , a1, d2x, c1/d1

c1x, q1−Ma1/b1
; q, qd1/b1d2

)
.

(13)

Proof. From (7), we have

2Φ1

(
q−M , a1

b1
; q, cDq

){
(c1x; q)∞

(d1x, d2x)∞

}

=
M∑

k=0

[
q−M , a1

q, b1
; q

]

k

ckDk
q

{
(c1x; q)∞
(d1x; q)∞

}

×
M−k∑

j=0

[
q−(M−k), a1q

k

q, b1q
k ; q

]

j

(
c

qk

)j

Dj
q

{
1

(d2xqk; q)∞

}

= aM
1

(b1/a1; q)M

(b1; q)M

(c1x; q)∞
(d1x, d2x)∞

4Φ2

(
q−M , a1, d2x, c1/d1

c1x, q1−Ma1/b1
; q, qd1/b1d2

)
.

This completes the proof. ¤

3. Main results and special cases

Theorem 3.1 (cf. [8], p. 11). The q-Chu-Vandermonde summation

(14) 2Φ1

(
q−n, a

d
; q, q

)
= an (d/a; q)n

(d; q)n
.

Proof. Setting F (x) = (xc1; q)∞/(xd1; q)∞ in (11), and then putting xc1 =
d, xd1 = a, we complete the proof. ¤

Theorem 3.2 (cf. [8, p. 16, Eq. (1.9.11)]). Suppose n > m1 + · · ·+mr. Then
we have

(15) r+1Φr

(
q−n, xc1q

m1 , . . . , xcrq
mr

xc1, . . . , xcr
; q, q

)
= 0.

Proof. Setting di = ciq
mi , mi = 0, 1, . . . ,∞, i = 1, 2, . . . , r, in (11), we complete

the proof. ¤

Theorem 3.3. We have

n∑
m=0

M∑

j=0

(q−n, a; q)m

(q, d; q)m

(q−M , a1; q)j

(q, b1; q)j
qm+j+mj

=
aM
1 (b1/a1; q)M

(b1; q)M

an(d/a; q)n

(d; q)n
4Φ2

(
q−M , a1, a, q−n

aq1−n/d, q1−Ma1/b1
; q, q2/db1

)
.

(16)
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Proof. We rewrite (14) as follows

(17)
n∑

m=0

(q−n; q)m

(q, d; q)m
qm 1

(aqm; q)∞
=

(−1)nq(
n
2)dn

(d; q)n

(aq1−n/d; q)∞
(aq/d, a; q)∞

.

Applying the operator 2Φ1

(
q−M , a1

b1
; q,qDq

)
to both sides of (17) with re-

spect to the variable a, from (13), we complete the proof. ¤

Corollary 3.1. We have
n∑

m=0

M∑

j=0

(q−n; q)m(q−M ; q)j

(q; q)m(q; q)j

qm+j+mj

(1− aqm)(1− a1qj)

=
(q; q)M

(a1; q)M+1

(q; q)n

(a; q)n+1

min{M,n}∑

k=0

(a, a1; q)k

(q; q)k
(−1)kq−(k

2)aM−k
1 an−k.

(18)

Proof. If set b1 = qa1 and d = qa in (16), we complete the proof. ¤

Theorem 3.4. We have

n∑
m=0

M∑

j=0

(q−n, a; q)m

(q, d; q)m

(q−M , a1; q)jd
j

(q, b1; q)j
qm+mj

=
aM
1 (b1/a1; q)M

(b1; q)M

an(d/a; q)n

(d; q)n
4Φ2

(
q−M , a1, aq/d, q1−n/d

aq1−n/d, q1−Ma1/b1
; q, d/b1

)
.

(19)

Proof. We rewrite (17) as follows

(20)
n∑

m=0

(q−n; q)m

(q, d; q)m
qm 1

(aqm; q)∞
=

(−1)nq(
n
2)dn

(d; q)n

(aq1−n/d; q)∞
(a, aq/d; q)∞

.

Applying the operator 2Φ1

(
q−M , a1

b1
; q,dDq

)
to both sides of (20) with respect

to the variable a, using (13), we complete the proof. ¤

Corollary 3.2 (cf. [8, p. 23]). Jackson’s transformation formula
(21)
M∑

j=0

(q−M , a1; q)j

(q, b1; q)j
dj =

aM
1 (b1/a1; q)M

(b1; q)M
3Φ1

(
q−M , a1, q/d

q1−Ma1/b1
; q, d/b1

)
.

Proof. If set a → 1 in (19), we complete the proof. ¤

Corollary 3.3. We have
(22)

M∑

j=0

[
M
j

]
(−1)jq(

j+1
2 ) (a1; q)j

(b1; q)j

(
db1

a1

)j

=
(b1/a1; q)M

(b1; q)M

M∑

j=0

(q−M , a1, dq; q)j

(q, a1q1−M/b1; q)j
qj .
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Proof. If set q → 1/q in (21), then replacing a1 by 1/a1, b1 by 1/b1, we complete
the proof. ¤

Setting d = 1, b1 = qa1, (22) tends to:

Corollary 3.4. We have

(23)
M∑

j=0

[
M
j

]
(−1)jq(

j
2)+2j 1

1− a1qj
=

(q; q)M

(a1; q)M+1

M∑

j=0

(a1; q)jq
j .

Theorem 3.5. We have

3Φ2

(
q−M , c1/d2, xd1

cd1q
−M , xc1

; q, cd2

)

=
(q/cd2; q)M

(q/cd1; q)M

(
d2

d1

)M

3Φ2

(
q−M , c1/d1, xd2

cd2q
−M , xc1

; q, cd1

)
.

(24)

Proof. For

1Φ0

(
q−M

− ; q, cDq

) {
(c1x; q)∞

(d1x, d2x)∞

}
= 1Φ0

(
q−M

− ; q, cDq

){
(c1x; q)∞

(d2x, d1x)∞

}
,

and applying (12), we complete the proof. ¤

In the identity (24), taking q → 1/q, then replacing (x, c, c1, di) by (1/x,
c/q, 1/c1, 1/di) respectively, where i = 1, 2, we obtain the following identity:

Theorem 3.6. We have
(25)

3Φ2

(
q−M , c1/d2, xd1

d1q
1−M/c, xc1

; q, q
)

=
(c/d2; q)M

(c/d1; q)M
3Φ2

(
q−M , c1/d1, xd2

d2q
1−M/c, xc1

; q, q
)

.

Remark. An equivalent identity can be found in Andrews’ paper [3, Corol-
lary 4].

Theorem 3.7. We have
(26)

3Φ2

(
q−M , a, b

c, d
; q, cdqM/ab

)
=

(cd/ab; q)M

(d; q)M
3Φ2

(
q−M , c/a, c/b

c, cd/ab
; q, dqM

)
.

Proof. In (24), letting c → cqM , then replacing xc1 by c, cd1 by d, c1/d2 by a,
last step setting cd1/ad2 = b, we complete the proof. ¤

Remark. (26) follows from setting a = q−M in the Sears 3Φ2 transformation
[8, p. 62, Eq. (3.2.7)].

Corollary 3.5 (cf. [8, p. 10, Eq. (1.4.6)]). Heine’s 2Φ1 transformation
formula

(27) 2Φ1

(
a, b

c
; q, z

)
=

(abz/c; q)∞
(z; q)∞

2Φ1

(
c/a, c/b

c
; q, abz/c

)
.
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Proof. In (25), letting M → ∞, then replacing c/d1 by z, xc1 by c, c1/d1 by
a, last step setting d1c/ad2 = b, we complete the proof. ¤
Corollary 3.6. We have

2Φ2

(
a, b
c, d

; q, cd/ab

)
=

(cd/ab; q)∞
(d; q)∞

2Φ2

(
c/a, c/b
c, cd/ab

; q, d
)

.

Proof. In (25), letting M →∞, we complete the proof. ¤

4. Some other special cases

Theorem 4.1. We have

(28)
M∑

k=0

(c1/d2; q)kqk

(q, xc1; q)k
=

M∑

k=0

(−1)kq(
k+1
2 )(xd2; q)k

(q, xc1; q)k(q; q)M−k

(
c1

d2

)k

.

Proof. In (25), putting c = d1q, then letting d1 → 0, we complete the proof. ¤
Theorem 4.2. We have

(29)
M∑

k=0

(c1/d2; q)k(−xd2)kq(
k
2)

(q, xc1; q)k
=

M∑

k=0

(−1)kq(
k+1
2 )(xd2; q)M−k

(q; q)k(q, xc1; q)M−k
.

Proof. In (28), taking q → 1/q, then replacing (x, c1, d2) by (1/x, 1/c1, 1/d2)
respectively, we complete the proof. ¤
Corollary 4.1. We have

(30)
M∑

k=0

qk

(xd2; q)k+1
=

M∑

k=0

(−1)kq(
k
2)q2k

(1− xd2qk)(q; q)k(q; q)M−k
.

Proof. In (28), putting c1 = d2q, we complete the proof. ¤
Corollary 4.2. We have

(31)
M∑

k=0

qk

(q, xc1; q)k
=

M∑

k=0

qk2
(xc1)k

(q, xc1; q)k(q; q)M−k
.

Proof. In (28), letting d2 →∞, we complete the proof. ¤
Corollary 4.3. We have

(32)
M∑

k=0

qk

(q; q)2k
=

M∑

k=0

qk2+k

(q; q)2k(q; q)M−k
.

Proof. In (31), putting xc1 = q, we complete the proof. ¤
Corollary 4.4. We have

(33)
M∑

k=0

qk2−k(xc1)k

(q, xc1; q)k
=

M∑

k=0

(−1)kq(
k+1
2 )

(q; q)k(q, xc1; q)M−k
.
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Proof. In (29), setting d2 = 0, we complete the proof. ¤
Corollary 4.5. We have

(34)
M∑

k=0

q(
k+1
2 )(−1; q)k

(q; q)2k
=

M∑

k=0

(−1)kq(
k+1
2 )(−q; q)M−k

(q; q)k(q; q)2M−k

.

Proof. In (29), taking xc1 = q, c1 = −d2, we complete the proof. ¤
Theorem 4.3. We have

M∑

k=0

(−1)kqk2−k(a, b; q2)k

(q2, c, d; q2)k(q2; q2)M−k

(
cd

ab

)k

=
(cd/ab; q2)M

(d; q2)M

M∑

k=0

dk(−1)kqk2−k(c/a, c/b; q2)k

(q2, c, cd/ab; q2)k(q2; q2)M−k
.

(35)

Proof. In (26), letting q → q2, we complete the proof. ¤
Corollary 4.6. We have

(36)
M∑

k=0

(−1)kqk2
(−q; q2)k

(q4; q4)k(q2; q2)M−k
=

(q; q2)M

(q4; q4)M
.

Proof. In (35), letting c = b, d = −q2, a = −q, we complete the proof. ¤
Corollary 4.7. We have

(37)
M∑

k=0

qk2−sk(−qs; q2)k

(q; q)2k(q2; q2)M−k
=

(−q1−s; q2)M

(q; q)2M
,

where s = 0, 1.

Proof. In (35), letting c = b, d = q, a = −q,−1, we complete the proof. ¤
Corollary 4.8. We have

(38)
M∑

k=0

qk2+(2−s)k(−qs; q2)k

(q; q)2k+1(q2; q2)M−k
=

(−q3−s; q2)M

(q; q)2M+1
,

where s = 0, 1, 2.

Proof. In (35), letting c = b, d = q3, a = −q2,−q,−1, we complete the proof.
¤

Corollary 4.9. We have
M∑

k=0

q3k2−sk

(q2−(1−s); q2)k(q4−2s; q4)k(q2; q2)M−k

=
1

(−q2−s; q2)M

M∑

k=0

qk2+(1−s)k

(q; q)2k(q2; q2)M−k
,

(39)
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where s = 0, 1.

Proof. In (35), letting c = q, d = −q2,−q, a, b →∞, we complete the proof. ¤

Corollary 4.10. We have
(40)

M∑

k=0

q3k2+sk

(q; q)2k+1(−qs; q2)k(q2; q2)M−k
=

1
(−qs; q2)M

M∑

k=0

qk2+(s−1)k

(q; q)2k+1(q2; q2)M−k
,

where s = 0, 1, 2, 3.

Proof. In (35), letting c = q3, d = −q3,−q2,−q,−1, a, b →∞, we complete the
proof. ¤

Corollary 4.11. We have

(41)
M∑

k=0

q2k2
(q; q2)k

(−q; q2)k(q4; q4)k(q2; q2)M−k
=

1
(−q; q2)M

M∑

k=0

qk2
(−q; q2)k

(q4; q4)k(q2; q2)M−k
,

where s = 0, 1, 2, 3.

Proof. In (35), letting c = q2, d = −q, a = q, b →∞, we complete the proof. ¤

Letting M →∞, if xc1 = q, (33) tends to (cf. [1, p. 33, Eq. (1.1)] or [3, p.
1, Eq. (1.2)])

∞∑

k=0

qk2

(q; q)2k
=

1
(q; q)∞

.

Equation (34) reduces to

(42)
∞∑

k=0

q(
k+1
2 )(−1; q)k

(q; q)2k
=

(−q; q)∞
(q; q)∞

.

Equation (39) turns to

(43)
∞∑

k=0

q3k2−sk

(q2−(1−s); q2)k(q4−2s; q4)k
=

1
(−q2−s; q2)∞

∞∑

k=0

qk2+(1−s)k

(q; q)2k
,

where s = 0, 1.

Equation (40) tends to

(44)
∞∑

k=0

q3k2+sk

(q; q)2k+1(−qs; q2)k
=

1
(−qs; q2)∞

∞∑

k=0

qk2+(s−1)k

(q; q)2k+1
,

where s = 0, 1, 2, 3.

Applying these relations above, then using the identities

(45)
∞∑

k=0

qk2

(q; q)2k
=

(q2, q8, q10; q10)∞(q6, q14; q20)∞
(q; q)∞

,



232 JIAN-PING FANG

(46)
∞∑

k=0

qk2+k

(q; q)2k+1
=

(q3, q7, q10; q10)∞(q4, q16; q20)∞
(q; q)∞

,

(47)
∞∑

k=0

qk2+k

(q; q)2k
=

(q, q9, q10; q10)∞(q8, q12; q20)∞
(q; q)∞

,

(48)
∞∑

k=0

qk2+2k

(q; q)2k+1
=

(q4, q6, q10; q10)∞(q2, q18; q20)∞
(q; q)∞

,

shown in Slater’s paper [14, p. 162, Eq. (98), (94), (99), (96), respectively] (or
cf. [4, p. 252, Eq. (11.2.1)–Eq. (11.2.4)]), we have

(49)
∞∑

k=0

q3k2

(q; q2)k(q4; q4)k
=

(q, q9, q10; q10)∞(q8, q12; q20)∞
(q; q)∞(−q2; q2)∞

,

(50)
∞∑

k=0

q3k2−k

(q2; q2)k(q2; q4)k
=

(q2, q8, q10; q10)∞(q6, q14; q20)∞
(q; q)∞(−q; q2)∞

,

(51)
∞∑

k=0

q3k2+2k

(q; q2)k+1(q4; q4)k
=

(q3, q7, q10; q10)∞(q4, q16; q20)∞
(q; q)∞(−q2; q2)∞

,

(52)
∞∑

k=0

q3k2+3k

(q; q)2k+1(−q; q2)k+1
=

(q4, q6, q10; q10)∞(q2, q18; q20)∞
(q; q)∞(−q; q2)∞

.

Equations (49), (50), (51) and (52) are equivalent to the identities [14, p. 154,
Eq. (19)], [14, p. 156, Eq. (46)], [4, p. 252, Eq. (11.2.7)] and [14, p. 156, Eq.
(44)] respectively. In [2, 3, 4, 9, 15], the authors used q-series transformations
to obtain many Rogers-Ramanujan type identities. Here, we will present a new
identity by using this method. From the identity in Slater’s list [14, p. 154,
Eq. 25], combined with (41), we get the new identity.

Corollary 4.12. We have

∞∑

k=0

q2k2
(q; q2)k

(−q; q2)k(q4; q4)k
=

(q3, q3, q6; q6)∞
(q2; q2)∞

.
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