DOI QR코드

DOI QR Code

Structure and Energetics of (C60)22+ Conformers: Quantum Chemical Studies

  • Lee, Chang-Hoon (Department of Chemistry, Nanoscale Sciences and Technology Institute, Wonkwang University) ;
  • Park, Sung-Soo (CAE Group, Central R&D Institute, Samsung Electro-Mechanics Co. Ltd.) ;
  • Lee, Wang-Ro (Faculty of Liberal Education, Chonbuk National University) ;
  • Lee, Kee-Hag (Department of Chemistry, Nanoscale Sciences and Technology Institute, Wonkwang University)
  • Published : 2010.02.20

Abstract

The geometrical structures and energetics of positively doubly charged fullerene dimer $(C_{60})_2{^{2+}}$ conformers were studied using semiempirical PM3 and MNDO, Hartree-Fock (HF), and Hybrid B3LYP density functional methods. The shape of the HOMO-LUMO for the three conformers was also analyzed. The gauche conformer was the most stable of the three conformers. The anti conformer was more stable than the syn conformer.

Keywords

References

  1. Broderick, W. E. J. Am. Chem. Soc. 1994, 116, 5489. https://doi.org/10.1021/ja00091a071
  2. Allemand, P. M.; Khemani, K. C.; Koch, A. S.; Wuld, F.; Holczer, K.; Donovan, S.; Gurner, G.; Thompson, J. D. Science 1993, 253, 301. https://doi.org/10.1126/science.253.5017.301
  3. Wang, Y. Nature 1992, 356, 585. https://doi.org/10.1038/356585a0
  4. Meilunas, R. J.; H, R. P.; Liu, S. Z.; Kappes, M. M. Appl. Phys. Lett. 1991, 59, 3461. https://doi.org/10.1063/1.105678
  5. Ruoff, R. F.; Lorents, D. C.; Chan, B.; Malhorta, R.; Subramoney, S. Science 1993, 259, 346. https://doi.org/10.1126/science.259.5093.346
  6. Hamsa, A. V.; Balooch, M.; Tench, R. J.; Schildbach, M. A.; Hawley-Fedder, R. A.; Lee, H. W. H.; McConaghy, C. J. Vac. Sci. Technol. B 1993, 11, 763. https://doi.org/10.1116/1.586784
  7. Hebard, A. F.; Eom, C. B.; Fleming, R. M.; Chabal, Y. J. Appl. Phys. A - Solids & Surf. 1993, 57, 299.
  8. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  9. Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333. https://doi.org/10.1038/361333a0
  10. Margulis, L.; Salitra, G.; Tenne, R.; Talianker, M. Nature 1993, 365, 113.
  11. Hwang, K. C.; Mauzerall, D. Nature 1993, 361, 138. https://doi.org/10.1038/361138a0
  12. Hebard, A.; Rosseinsky, M.; Haddon, R.; Murphy, D.; Glarum, S.; Palstra, T.; Ramirez, A.; Kortan, A. Nature 1991, 350, 600. https://doi.org/10.1038/350600a0
  13. Lee, K. H.; Paek, U-H. J. Phys. Chem. Solids 1993, 54, 565. https://doi.org/10.1016/0022-3697(93)90234-I
  14. Fu, R.; Lee, K. H.; Sun, X.; Ye, H. J. Bull. Kor. Chem. Soc. 1993, 14, 740.
  15. Fu, R.; Lee, K. H.; Park, T. Y.; Sun, X.; Yu, Z. G. Bull. Kor. Chem. Soc. 1994, 15, 112.
  16. Park, T. Y.; Lee, K. H.; Zhang, G. P.; Fu, R. T.; Sun, X.; Fu, R. L.; Ye, H. J. Solid State Comm. 1995, 93, 507. https://doi.org/10.1016/0038-1098(94)00826-4
  17. Lee, K. H.; Lee, H. M.; Lee, W. R. Syn. Metals 1995, 70, 1499. https://doi.org/10.1016/0379-6779(94)02933-P
  18. Zhang, G. P.; Fu, R. T.; Sun, X.; Lee, K. H.; Park, T. Y. Phys. Lett. A 1995, 199, 391. https://doi.org/10.1016/0375-9601(95)00160-5
  19. Zhang, G. P.; Ma, Y. S.; Sun, X.; Lee, K. H.; Park, T. Y. Phys. Rev. B 1995, 52, 6081 https://doi.org/10.1103/PhysRevB.52.6081
  20. Zhang, G. P.; Fu, R. T.; Sun, X.; Zong, X. F.; Lee, K. H.; Park, T. Y. J. Phys. Chem. 1995, 99, 12301. https://doi.org/10.1021/j100032a038
  21. Lee, K. H.; Lee, H. M.; Chon, H. C.; Park, S. S.; Lee, W. R.; Park, T. Y.; Sun, X. Bull. Kor. Chem. Soc. 1996, 17, 452.
  22. Lee, K. H.; Lee, H. M.; Lee, W. R.; Park, S. S.; Lee, H.; Park, T. Y.; Sun, X.; Nasu, K. Syn. Metals 1997, 86, 2389. https://doi.org/10.1016/S0379-6779(97)81172-1
  23. Lee, K. H.; Lee, H. M.; Park, S. S.; Eun, H. M.; Lee, J. Y.; Park, T. Y.; Lee, W. R.; Sun, X. J. Kor. Phys. 1998, 32, 297.
  24. Lee, W. R.; Lee, C.; Kang, J.; Park, S. S.; Hwang, Y. K.; Lee, K. H. Bull. Kor. Chem. Soc. 2009, 30, 445. https://doi.org/10.5012/bkcs.2009.30.2.445
  25. Guo, T.; Jin, C.; Smalley, R. E. J. Phys. Chem. 1991, 95, 948.
  26. Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, J. P. F.; Fure, J.; Wang, L.; Alford, J. M.; Smalley, R. E. J. Phys. Chem. 1991, 95, 7564. https://doi.org/10.1021/j100173a002
  27. O'Brien, S. C.; Heath, J. R.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1988, 88, 220. https://doi.org/10.1063/1.454640
  28. Radi, P. P.; Hsu, M.-T.; Rincon, M. E.; Kemper, P. R.; Bowers, M. T. Chem. Phys. Lett. 1990, 174, 223. https://doi.org/10.1016/0009-2614(90)85336-B
  29. Guo, T.; Jin, C.; Smally, R. E. J. Phys. Chem. 1991, 95, 4948. https://doi.org/10.1021/j100166a010
  30. Muhr, H. J.; Nesper, H. R.; Schnyder, B.; Kotz, R. Chem. Phys. Lett. 1996, 249, 399. https://doi.org/10.1016/0009-2614(95)01451-9
  31. Zou, Y. J.; Li, Y. L.; Zhang, X. W.; Wang, B.; Yan, H. Materials Sci. Eng. 2001, B84, 163.
  32. Andreoni, W.; Gygi, F.; Parrinello, M. Chem. Phys. Lett. 1992, 190, 159. https://doi.org/10.1016/0009-2614(92)85318-5
  33. Kurita, N.; Kobayashi, K.; Kumahora, H.; Tago, K.; Ozawa, K. Chem. Phys. Lett. 1992, 198, 95. https://doi.org/10.1016/0009-2614(92)90054-Q
  34. Lee, K. H.; Park, S. S.; Suh, Y.; Yamabe, T.; Osawa, E.; Luthi, H. P.; Gutta, P.; Lee. C. H. J. Am. Chem. Soc. 2001, 123, 11085. https://doi.org/10.1021/ja005671b
  35. Batirev, I. G.; Lee, K. H.; Leiro, J. A. J. Phys. Chem. Solids 2000, 61, 695. https://doi.org/10.1016/S0022-3697(99)00310-8
  36. Lee, K. H.; Lee, C.; Park, S. S.; Kim, Y.; Lüthi, H. P.; Lee, S.; Lee, Y. S. Syn. Metals 2003, 135-136, 723. https://doi.org/10.1016/S0379-6779(02)00813-5
  37. Hummelen, J. C.; Knight, B.; Pavlovich, J.; González, R.; Wudl, F. Science 1995, 269, 1554. https://doi.org/10.1126/science.269.5230.1554
  38. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  39. Lee, C.; Yang, W.; Parr, P. G. Phys. Rev. 1988, B37, 785.
  40. Frisch, M. J. et al. Gaussian 98 Rev. A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.
  41. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063. https://doi.org/10.1063/1.473182
  42. Raghavachari, K. J. Chem. Phys. 1984, 81, 1383. https://doi.org/10.1063/1.447772
  43. Wolfe, S. Acc. Chem. Res. 1972, 5, 102. https://doi.org/10.1021/ar50051a003
  44. Eliel, E. L. Conformational Analysis:3, In Encyclopedia of Computational Chemistry; Schleyer, P. v. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer III, H. F., Schreiner, P. R., Eds.; John Wiley & Sons: Chichester, UK, 1998, Vol. 1, pp 531-542.

Cited by

  1. Conformational stability and rotational energy barrier of RC60–C60R dimers: hyperconjugation versus steric effect vol.9, pp.2, 2012, https://doi.org/10.1007/s13738-011-0042-7