DOI QR코드

DOI QR Code

Highly Efficient Blue-Light-Emitting Diodes Based on Styrylamine Derivatives End-capped with a Diphenylvinyl Group

  • Published : 2010.02.20

Abstract

In this paper, we reported the synthesis and electroluminescent properties of blue fluorescent styrylamine derivatives end-capped with a diphenylvinyl group. A new series of styrylamine derivatives have been synthesized via the Horner-Wadsworth-Emmons reaction. To explore electroluminescent properties of these molecules, multilayer organic lighte-mitting devices with the configuration of ITO/NPB/1-5 doped in MADN/Bphen/Liq/Al were fabricated. All devices exhibited blue emissions with good EL performances. Among those reported herein, the device using dopant 5 exhibited a maximum luminance of $24,000\;cd/m^2$ at 11.0 V, a luminous efficiency of 12.5 cd/A at $20\;mA/cm^2$, a power efficiency of 6.50 lm/W at $20\;mA/cm^2$, and $CIE_{x,y}$ coordinates of (x = 0.173, y = 0.306) at 8.0 V, all of which demonstrate the superiority of these materials in blue OLEDs.

Keywords

References

  1. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  2. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121. https://doi.org/10.1038/16393
  3. Forrest, S. R. Org. Electron. 2003, 4, 45. https://doi.org/10.1016/j.orgel.2003.08.014
  4. Danel, K.; Huang, T. H.; Lin, J. T.; Tao, Y. T.; Chuen, C. H. Chem. Mater. 2002, 14, 3860. https://doi.org/10.1021/cm020250+
  5. Tang, C.; Liu, F.; Xia, Y. L.; Lin, J.; Xie, L. H.; Zhong, G. Y.; Fan, Q. L.; Huang, W. Org. Electron. 2006, 7, 155. https://doi.org/10.1016/j.orgel.2006.01.001
  6. Tang, C.; Liu, F.; Xia, Y. L.; Lin, J.; Xie, L. H.; Huang, W.; Li, S. B.; Fan, Q. L.; Huang, W. J. Mater. Chem. 2006, 16, 4074. https://doi.org/10.1039/b607923g
  7. Kauffman, J. M.; Moyna, G. J. Org. Chem. 2003, 68, 839. https://doi.org/10.1021/jo020333+
  8. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. https://doi.org/10.1063/1.343409
  9. Shi, J. M.; Tang, C. W. Appl. Phys. Lett. 1997, 70, 1665. https://doi.org/10.1063/1.118664
  10. Hung, L. S.; Chen, C. H. Mater. Sci. Eng. R 2002, 39, 143. https://doi.org/10.1016/S0927-796X(02)00093-1
  11. Shi, J. M.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201. https://doi.org/10.1063/1.1475361
  12. He, F.; Tian, L.; Tian, X.; Xu, H.; Wang, Y.; Xie, W.; Hanif, M.; Xia, J.; Shen, F.; Yang, B.; Li, F.; Ma, Y.; Yang, Y.; Shen, J. Adv. Funct. Mater. 2007, 17, 1551. https://doi.org/10.1002/adfm.200600518
  13. Zheng, S.; Barlow, S.; Parker, T. C.; Marder, S. R. Tetrahedron Letters 2003, 44, 7989. https://doi.org/10.1016/j.tetlet.2003.08.110
  14. Li, C. L.; Shieh, S. J.; Lin, S. C.; Liu, R. S. Org. Lett. 2003, 5, 1131. https://doi.org/10.1021/ol034246v
  15. Plater, M. J.; Jackson, T. Tetrahedron 2003, 59, 4673. https://doi.org/10.1016/S0040-4020(03)00520-9
  16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakia, H.; Klene, M.; Li, S.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, revision B05, Gaussian, Inc., Pittsburgh, PA 2003.
  17. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. T. Appl. Phys. Lett. 2001, 79, 2082. https://doi.org/10.1063/1.1400076
  18. Berkovic, G. E.; Ludmer, Z. Chem. Phys. 1981, 58, 57. https://doi.org/10.1016/0301-0104(81)80045-6
  19. Kolosov, D.; Adamovich, V.; Djurovich, P.; Thompson, M. E.; Adachi, C. J. Am. Chem. Soc. 2002, 124, 9945. https://doi.org/10.1021/ja0263588
  20. Sun, Y.; Giebnik, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, R. Nature 2006, 440, 908. https://doi.org/10.1038/nature04645
  21. Yook, K. S.; Jeon, S. O.; Joo, C. W.; Lee, J. Y. Appl. Phys. Lett. 2008, 93, 073302. https://doi.org/10.1063/1.2969821

Cited by

  1. Synthesis of Some Green Dopants for OLEDs Based on Arylamine 2,3-disubstituted Bithiophene Derivatives vol.18, pp.11, 2013, https://doi.org/10.3390/molecules181114033
  2. ChemInform Abstract: Highly Efficient Blue-Light-Emitting Diodes Based on Styrylamine Derivatives End-Capped with a Diphenylvinyl Group vol.41, pp.30, 2010, https://doi.org/10.1002/chin.201030091
  3. Synthesis and Electroluminescent Properties of t-Butylated 2-(2-(4-(Diarylamino)styryl)-4H-chromen-4-ylidene)malononitrile Derivatives for OLED vol.550, pp.1, 2011, https://doi.org/10.1080/15421406.2011.599771
  4. Synthesis and Characterization of 9,9'-Diethyl-2-diphenylaminofluorene Derivatives as Blue Fluorescent Materials for OLEDs vol.32, pp.5, 2010, https://doi.org/10.5012/bkcs.2011.32.5.1593
  5. Red Fluorescent 4-(Dicyanomethylene)-2-norbonenyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJNB) for Organic Light-Emitting Diodes (OLEDs) vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1391
  6. Red Fluorescent 4-(Dicyanomethylene)-2-norbonenyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJNB) for Organic Light-Emitting Diodes (OLEDs) vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1391
  7. Synthesis of Donor-Aromatic-Donor Type π-conjugated Materials and their Application to Red Fluorescent Organic Light-Emitting Diodes vol.563, pp.1, 2010, https://doi.org/10.1080/15421406.2012.689155
  8. Synthesis of Donor-Aromatic-Donor Type π-conjugated Materials and their Application to Red Fluorescent Organic Light-Emitting Diodes vol.563, pp.1, 2010, https://doi.org/10.1080/15421406.2012.689155
  9. Blue Organic Light-Emitting Diodes Based on Diarylamino-Substituted Stilbene Derivatives vol.563, pp.1, 2010, https://doi.org/10.1080/15421406.2012.689717
  10. Red Fluorescent 4-(Dicyanomethylene)-2- (1-pentylbicyclo[2,2,2]oct-4-yl)-6-(1,1,2,2,7,7-hexamethyljulolidyl-9-enyl)-4H-pyran (DCHMJPB) for Organic Light-Emitting Diodes (OLEDs) vol.567, pp.1, 2010, https://doi.org/10.1080/15421406.2012.703810
  11. Spirally configured cis-stilbene/fluorene hybrids as ambipolar, fluorescent materials for organic light emitting diode applications vol.3, pp.24, 2010, https://doi.org/10.1039/c3ra41642a
  12. Non-Doped Blue OLEDs Based on 9,9′-Dimethylfluorene Containing 10-Naphthylanthracene Derivatives vol.584, pp.1, 2010, https://doi.org/10.1080/15421406.2013.849466
  13. Simple modification of anthracene for the blue emitting materials vol.34, pp.1, 2010, https://doi.org/10.12925/jkocs.2017.34.1.101
  14. Electroluminescence Properties of Simple Anthracene Derivatives Containing Phenyl or Naphthyl Group at 9,10-position for the Blue OLED vol.34, pp.3, 2010, https://doi.org/10.12925/jkocs.2017.34.3.562