DOI QR코드

DOI QR Code

Multiconfiguration Molecular Mechanics Studies for the Potential Energy Surfaces of the Excited State Double Proton Transfer in the 1:1 7-Azaindole:H2O Complex

  • Han, Jeong-A (Department of Chemistry, Kyung Hee University) ;
  • Kim, Yong-Ho (Department of Chemistry, Kyung Hee University)
  • Published : 2010.02.20

Abstract

The multiconfiguration molecular mechanics (MCMM) algorithm was used to generate potential and vibrationally adiabatic energy surfaces for excited-state tautomerization in the 1:1 7-azaindole:$H_2O$ complex. Electronic structures and energies for reactant, product, transition state were computed at the CIS/6-31G(d,p) level of theory. The potential and vibrationally adiabatic energies along the reaction coordinate were generated step by step by using 16 high-level Shepard points, which were computed at the CIS/6-31G(d,p) level. This study shows that the MCMM method was applied successfully to make quite reasonable potential and adiabatic energy curves for the excited-state double proton transfer reaction. No stable intermediates are present in the potential energy curve along the reaction coordinate of the excited-state double proton transfer in the 1:1 7-azaindole:$H_2O$ complex, indicating that these two protons are transferred concertedly. The change in the bond distances along the reaction coordinate shows that two protons move very asynchronously to make an $H_3O^+$-like moiety at the transition state.

Keywords

References

  1. Taylor, C. A.; El-Bayoumi, M. A.; Kasha, M. Proc. Natl. Acad. Aci. U.S.A. 1969, 63, 253. https://doi.org/10.1073/pnas.63.2.253
  2. Chaban, G. M.; Gordon, M. S. J. Phys. Chem. A 1999, 103, 185. https://doi.org/10.1021/jp9837838
  3. Gordon, M. S. J. Phys. Chem. 1996, 100, 3974. https://doi.org/10.1021/jp952851c
  4. Huang, Y.; Arnold, S.; Sulkes, M. J. Phys. Chem. 1996, 100, 4734. https://doi.org/10.1021/jp951183s
  5. Chapman, C. F.; Maroncelli, M. J. Phys. Chem. 1992, 96, 8430. https://doi.org/10.1021/j100200a042
  6. Chen, Y.; Gai, F.; Petrich, J. W. J. Am. Chem. Soc. 1993, 115, 10158. https://doi.org/10.1021/ja00075a035
  7. Chou, P.-T.; Martinez, M. L.; Cooper, W. C.; McMorrow, D.; Collins, S. T.; Kasha, M. J. Phys. Chem. 1992, 96, 5203. https://doi.org/10.1021/j100192a002
  8. Kwon, O.-H.; Jang, D.-J. J. Phys. Chem. B 2005, 109, 20479. https://doi.org/10.1021/jp053187v
  9. Kwon, O.-H.; Lee, Y.-S.; Park, H. J.; Kim, Y.; Jang, D.-J. Angew. Chem. 2004, 43, 5792. https://doi.org/10.1002/anie.200461102
  10. Mente, S.; Maroncelli, M. J. Phy. Chem. A 1998, 102, 3860. https://doi.org/10.1021/jp980771d
  11. Moog, R. S.; Maroncelli, M. J. Phy. Chem. 1991, 95, 10359. https://doi.org/10.1021/j100178a023
  12. Waluk, J. Acc. Chem. Res. 2003, 36, 832. https://doi.org/10.1021/ar0200549
  13. Chou, P. T.; Yu, W. S.; Wei, C. Y.; Cheng, Y. M.; Yang, C. Y. J. Am. Chem. Soc. 2001, 123, 3599. https://doi.org/10.1021/ja002975p
  14. Hsieh, W.-T.; Hsieh, C.-C.; Lai, C.-H.; Cheng, Y.-M.; Ho, M.-L.; Wang, K. K.; Lee, G.-H.; Chou, P.-T. Chem. Phys. Chem. 2008, 9, 293. https://doi.org/10.1002/cphc.200700578
  15. Kina, D.; Nakayama, A.; Noro, T.; Taketsugu, T.; Gordon, M. S. J. Phys. Chem. A 2008, 112, 9675. https://doi.org/10.1021/jp804368p
  16. Hung, F.-T.; Hu, W.-P.; Li, T.-H.; Cheng, C.-C.; Chou, P.-T. J. Phys. Chem. A 2003, 107, 3244. https://doi.org/10.1021/jp021620k
  17. Kyrychenko, A.; Waluk, J. J. Phys. Chem. A 2006, 110, 11958. https://doi.org/10.1021/jp063426u
  18. Nam, K.; Kim, Y. J. Chem. Phys. 2009, 130, 144310. https://doi.org/10.1063/1.3113662
  19. Podolyan, Y.; Gorb, L.; Leszczynski, J. J. Phys. Chem. A 2002, 106, 12103. https://doi.org/10.1021/jp021666d
  20. Kim, Y.; Lim, S.; Kim, Y. J. Phys. Chem. A 1999, 103, 6632. https://doi.org/10.1021/jp990398p
  21. Lim, J.-H.; Lee, E. K.; Kim, Y. J. Phys. Chem. A 1997, 101, 2233. https://doi.org/10.1021/jp9626226
  22. Kim, Y.; Corchado, J. C.; Villa, J.; Xing, J.; Truhlar, D. G. J. Chem. Phys. 2000, 112, 2718. https://doi.org/10.1063/1.480846
  23. Kim, Y. J. Phys. Chem. A 2005, 110, 600. https://doi.org/10.1021/jp0530193
  24. Ischtwan, J.; Collins, M. J. Chem. Phys. 1994, 100, 8080. https://doi.org/10.1063/1.466801
  25. Nguyen, K. A.; Rossi, I.; Truhlar, D. G. J. Chem. Phys. 1995, 5522.
  26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian, Inc.: Wallingford, CT, 2004
  27. Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W. J. Phys. Chem. 1980, 84, 1730. https://doi.org/10.1021/j100450a013
  28. Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, FL, 1985; Vol. 4, p 65.
  29. Liu, Y.-P.; Lynch, G. C.; Truong, T. N.; Lu, D.-H.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115, 2408. https://doi.org/10.1021/ja00059a041
  30. Skodje, R. T.; Truhlar, D. G.; Garrett, B. C. J. Phys. Chem. 1981, 85, 3019. https://doi.org/10.1021/j150621a001
  31. Garrett, B. C.; Joseph, T.; Truong, T. N.; Truhlar, D. G. Chem. Phys. 1989, 136, 271. https://doi.org/10.1016/0301-0104(89)80052-7
  32. Fernandez-Ramos, A.; Truhlar, D. G. J. Chem. Phys. 2001, 114, 1491. https://doi.org/10.1063/1.1329893
  33. Corchado, J. C.; Chuang, Y.-Y.; Fast, P. L.; Villa, J.; W.-P. Hu; Liu, Y.-P.; Lynch, G. C.; Nguyen, A.; Jackels, C. F.; V. S. Melissas; Lynch, B. J.; Rossi, I.; Coitino, E. L.; Fernandez-Ramos, A.; Pu, J.; Steckler, R.; Garrett, B. C.; Isaacson, A. D.; Truhlar, D. G. POLYRATE 8.7.2, University of Minnesota, Minneapolis, 2002.
  34. Albu, T. V.; Corchado, J. C.; Kim, Y.; Villa, J.; Xing, J.; Truhlar, D. G. MC-TINKERATE 8.8, University of Minnesota, Minneapolis, 2002.
  35. Corchado, J. C.; Chuang, Y.-Y.; Fast, P. L.; Hu, W.-P.; Liu, Y.-P.; Lynch, G. C.; Nguyen, K. A.; Jackels, C. F.; Ramos, A. F.; Ellingson, B. A.; Lynch, B. J.; Zheng, J.; Melissas, V. S.; Villa, J.; Rossi, I.; Coitino, E. L.; Pu, J.; Albu, T. V.; Steckler, R.; Garrett, B. C.; Isaacson, A. D.; Truhlar, D. G. Polyrate-version 9.7, University of Minnesota, Minneapolis, U.S.A., 2007
  36. Albu, T. V.; Corchado, J. C.; Kim, Y.; Villa, J.; Xing, J.; Truhlar, D. G. MC-TINKER 1.0, University of Minnesota, Minneapolis, 2002
  37. Sakota, K.; Sekiya, H. J. Phys. Chem. A 2009, 113, 2663. https://doi.org/10.1021/jp900128d