DOI QR코드

DOI QR Code

Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted Benzoates with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Seo, Jin-A (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Song-I (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Hong, Yeon-Ju (Amorepacific Corporation R&D Center) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • 발행 : 2010.02.20

초록

Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl benzoate (5a), 4-nitrophenyl 4-methoxybenzoate (5b), and 4-nitrophenyl 4-hydroxybenzoate (5c) with alkali metal ethoxides, $EtO^-M^+$ ($M^+=Li^+$, $Na^+$ and $K^+$) in anhydrous ethanol (EtOH) at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [$EtO^-M^+$] exhibit upward curvatures in all cases, indicating that $M^+$ ions catalyze the reactions and ionpaired $EtO^-M^+$ species are more reactive than dissociated $EtO^-$. Second-order rate constants for reactions with dissociated $EtO^-$ and ion-paired $EtO^-M^+$ (i.e., $k_{EtO^-}$ and $k_{EtO^-M^+}$, respectively) have been calculated from ion-pair treatment for the reactions of 5a and 5b. However, such ion-pair treatment has failed to determine $k_{EtO^-}$ and $k_{EtO^-M^+}$ values for the reactions of 5c. It has been concluded that reactions of 5a and 5b are catalyzed by one metal ion, which increases electrophilicity of the reaction center through coordination on the carbonyl oxygen. In contrast, reactions of 5c have been suggested to involve two metal ions, i.e., the one coordinated on the carbonyl oxygen increases the electrophilicity of the reaction center while the other one associated on the phenoxy oxygen decreases the charge repulsion between the anionic reagents (i.e., $EtO^-$ and deprotonated 5c). It has been found that the rate equation derived from the mechanism involving two metal ions fits nicely to the kinetic results obtained for the reactions of 5c.

키워드

참고문헌

  1. Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2007, 42, 271-331. https://doi.org/10.1016/S0065-3160(07)42006-8
  2. Brown, R. S.; Neverov, A. A.; Tsang J. S. W.; Gibson, G. T. T.; Montoya-Pelaez, P. J. Can. J. Chem. 2004, 82, 1791-1805. https://doi.org/10.1139/v04-167
  3. Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485-493. https://doi.org/10.1021/ar9500877
  4. Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455. https://doi.org/10.1039/cs9952400449
  5. Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373. https://doi.org/10.1006/bioo.2000.1176
  6. Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363. https://doi.org/10.1021/ja00077a039
  7. Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551-5557. https://doi.org/10.1021/ja00170a020
  8. Kim, H. M.; Jang, B.; Cheon, Y. E.; Suh, M. P.; Suh, J. J. Biol. Inorg. Chem. 2009, 14, 151-157. https://doi.org/10.1007/s00775-008-0434-z
  9. Jang, B.; Suh, J. Bull. Korean Chem. Soc. 2008, 29, 202-204. https://doi.org/10.5012/bkcs.2008.29.1.202
  10. Jang, S. W.; Suh, J. Org. Lett. 2008, 10, 481-484. https://doi.org/10.1021/ol702860h
  11. Kim, M. G.; Kim, M. S.; Lee, S. D.; Suh, J. J. Biol. Inorg. Chem. 2006, 11, 867-875. https://doi.org/10.1007/s00775-006-0139-0
  12. Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872-4877. https://doi.org/10.1021/ic980205x
  13. Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889-1892. https://doi.org/10.1016/S0960-894X(01)80391-7
  14. Edwards, D. R.; Liu, C. T.; Garrett, G. E.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2009, 131, 13738-13748. https://doi.org/10.1021/ja904659e
  15. Liu, C. T.; Melnychuk, S. A.; Liu, C.; Neverov, A. A.; Brown, R. S. Can. J. Chem. 2009, 87, 640-649. https://doi.org/10.1139/V09-026
  16. Tsang, W. Y.; Edwards, D. R; Melnychuk, S. A.; Liu, C. T.; Liu, C.; Neverov, A. A.; Willams, N. H.; Brown, R. S. J. Am. Chem. Soc. 2009, 131, 4159-4166. https://doi.org/10.1021/ja900525t
  17. Edwards, D. R.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2009, 131, 368-377. https://doi.org/10.1021/ja807984f
  18. Liu, C. T.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2008, 1301, 16711-16720.
  19. Gibson, G. T. T.; Mohamed, M. F.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2006, 45, 7895-7902.
  20. Gibson, G. T. T.; Neverov, A. A.; Teng, A. C.-T.; Brown, R. S. Can. J. Chem. 2005, 83, 1268-1276. https://doi.org/10.1139/v05-065
  21. Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448. https://doi.org/10.1139/v89-220
  22. Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon J. G. Chem. Commun. 1984, 162-163.
  23. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475. https://doi.org/10.1039/b501537e
  24. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610. https://doi.org/10.1039/b314886f
  25. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
  26. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63. https://doi.org/10.1139/v02-202
  27. Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  28. Pregel, M. J.; Buncel, E. J. Org. Chem. 1991, 56, 5583-5588. https://doi.org/10.1021/jo00019a022
  29. Pregel, M. J.; Dunn, E. J.; Buncel, E. Can. J. Chem. 1990, 68, 1846-1858. https://doi.org/10.1139/v90-287
  30. Buncel, E.; Pregel, M. J. J. Chem. Soc., Chem. Commun. 1989, 1566-1567.
  31. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K.; Buncel, E. J. Org. Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
  32. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
  33. Um, I. H.; Lee, S. E.; Hong, Y. J.; Park, J. E. Bull. Korean Chem. Soc. 2008, 29, 117-121. https://doi.org/10.5012/bkcs.2008.29.1.117
  34. Um, I. H.; Hong, Y. J.; Lee, Y. J. Bull. Korean Chem. Soc. 1998, 19, 147-150.
  35. Um, I. H.; Nahm, J. H.; Lee, Y. J.; Kwon, D. S. Bull. Korean Chem. Soc. 1996, 17, 840-845.
  36. Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411. https://doi.org/10.1135/cccc19823405
  37. Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113. https://doi.org/10.1524/zpch.1973.84.1-4.100
  38. Um, I. H.; Hong, Y. J.; Kwon, D. S. Tetrahedron 1997, 53, 5073-5082. https://doi.org/10.1016/S0040-4020(97)00227-5
  39. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  40. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  41. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  42. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  43. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  44. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  45. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212-1217. https://doi.org/10.1021/jo802446y
  46. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  47. Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 2436-2441. https://doi.org/10.1021/jo035854r
  48. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  49. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  50. Cevasco, G.; Vigo, D.; Thea, S. Org. Lett. 1999, 1, 1165-1167. https://doi.org/10.1021/ol990796a
  51. Cevasco, G.; Guanti, G.; Hopkins, A. R.; Thea, S.; Williams, A. J. Org. Chem. 1985, 50, 479-484. https://doi.org/10.1021/jo00204a011
  52. Thea, S.; Cevasco, G.; Guanti, G.; Kashefi-Naini, N.; Williams, A. J. Org. Chem. 1985, 50, 1867-1872. https://doi.org/10.1021/jo00211a016

피인용 문헌

  1. Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 4-Nitrophenyl Nicotinate and Isonicotinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1951
  2. Evidence of cation-coordination involvement in directing the regioselective di-inversion reaction of vicinal di-sulfonate esters vol.11, pp.11, 2013, https://doi.org/10.1039/c3ob27336a
  3. -Acylpyridinium Ions and Other Acylating Agents vol.2013, pp.11, 2013, https://doi.org/10.1002/ejoc.201201540
  4. Enthalpy-Entropy Correlations in Reactions of Aryl Benzoates with Potassium Aryloxides in Dimethylformamide vol.45, pp.4, 2013, https://doi.org/10.1002/kin.20763
  5. Reactions of Aryl Benzoates with Potassium Aryloxides: Solvent Effects on Reaction Pathway and Kinetics vol.47, pp.5, 2015, https://doi.org/10.1002/kin.20909
  6. Metal Ion Catalysis in Nucleophilic Displacement Reactions of 2-Pyridyl X-Substituted Benzoates with Potassium Ethoxide in Anhydrous Ethanol vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3543
  7. Metal Ion Catalysis in Nucleophilic Substitution Reaction of 4-Nitrophenyl Picolinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.31, pp.9, 2010, https://doi.org/10.5012/bkcs.2010.31.9.2483
  8. Effect of Alkali Metal Ions on Alkaline Ethanolysis of 2-Pyridyl and 4-Pyridyl Benzoates in Anhydrous Ethanol vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2929
  9. Kinetic and Theoretical Studies on Alkaline Ethanolysis of 4‐Nitrophenyl Salicylate: Effect of Alkali Metal Ions on Reactivity and Mechanism vol.17, pp.10, 2010, https://doi.org/10.1002/chem.201002692
  10. Alkali Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 3,4-Dinitrophenyl Diphenylphosphinothioate with Alkali Metal Ethoxides in Anhydrous Ethanol: Effect of Changing Elec vol.32, pp.7, 2010, https://doi.org/10.5012/bkcs.2011.32.7.2423