DOI QR코드

DOI QR Code

Preparation of Gold Nanoisland Arrays from Layer-by-Layer Assembled Nanoparticle Multilayer Films

  • Choi, Hyung-Y. (Department of Chemistry and Biochemistry, California State University Long Beach) ;
  • Guerrero, Michael S. (Department of Physics, California State University Long Beach) ;
  • Aquino, Michael (Department of Chemistry and Biochemistry, California State University Long Beach) ;
  • Kwon, Chu-Hee (Department of Physics, California State University Long Beach) ;
  • Shon, Young-Seok (Department of Chemistry and Biochemistry, California State University Long Beach)
  • Published : 2010.02.20

Abstract

This article introduces a facile nanoparticle self-assembly/annealing method for the preparation of nanoisland films. First, nanoparticle-polymer multilayer films are prepared with layer-by-layer assembly. Nanoparticle multilayer films are then annealed at $~500^{\circ}C$ in air to evaporate organic matters from the films. During the annealing process, the nanoparticles on the solid surface undergo nucleation and coalescence, resulting in the formation of nanostructured gold island arrays. By controlling the overall thickness (number of layers) of nanoparticle multilayer films, nanoisland films with various island density and different average sizes are obtained. The surface property of gold nanoisland films is further controlled by the self-assembly of alkanethiols, which results in an increased surface hydrophobicity of the films. The structure and characteristics of these nanoisland film arrays are found to be quite comparable to those of nanoisland films prepared by vacuum evaporation method. However, this self-assembly/annealing protocol is simple and requires only common laboratory supplies and equipment for the entire preparation process.

Keywords

References

  1. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Nano Lett. 2003, 3, 1255-1259. https://doi.org/10.1021/nl0345062
  2. Röck, F.; Barsan, N.; Weimar, U. Chem. Rev. 2008, 108, 705-725. https://doi.org/10.1021/cr068121q
  3. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Chem. Rev. 2008, 108, 494-521. https://doi.org/10.1021/cr068126n
  4. Smith, E. A.; Corn, R. M. Applied Spectroscopy 2003, 57, 320A-332A. https://doi.org/10.1366/000370203322554446
  5. Lin, L.; Harris, J. W.; Thompson, H. G. R.; Brody, J. P. Anal. Chem. 2004, 76, 6555-6559. https://doi.org/10.1021/ac049371e
  6. Wark, A. W.; Lee, H. J.; Corn, R. M. Anal. Chem. 2005, 77, 3904-3907. https://doi.org/10.1021/ac050402v
  7. Yonzon, C. R.; Jeoung, E.; Zou, S.; Schatz, G. C.; Mrksich, M.; Van Duyne, R. P. J. Am. Chem. Soc. 2004, 126, 12669-12676. https://doi.org/10.1021/ja047118q
  8. Yonzon, C. R.; Stuart, D. A.; Zhang, X.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P. Talanta 2005, 67, 438-448. https://doi.org/10.1016/j.talanta.2005.06.039
  9. Zhao, J.; Das, A.; Zhang, X.; Schatz, G. C.; Sligar, S. G.; Van Duyne, R. P. J. Am. Chem. Soc. 2006, 128, 11004-11005. https://doi.org/10.1021/ja0636082
  10. Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2005, 109, 20522-20528. https://doi.org/10.1021/jp0540656
  11. Hicks, E. M.; Lyandres, O.; Hall, W. P.; Zou, S.; Glucksberg, M. R.; Van Duyne, R. P. J. Phys. Chem. C 2007, 111, 4116-4124. https://doi.org/10.1021/jp064094w
  12. Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P. Nano Lett. 2004, 4, 1029-1034. https://doi.org/10.1021/nl049670j
  13. Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596-10604. https://doi.org/10.1021/ja020393x
  14. Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 6961-6968. https://doi.org/10.1021/jp036261n
  15. Kalyuzhny, G.; Vaskevich, A.; Ashkenasy, G.; Shanzer, A.; Rubinstein, I. J. Phys. Chem. B 2000, 104, 8238-8244. https://doi.org/10.1021/jp0010785
  16. Kalyuzhny, G.; Schneeweiss, M. A.; Shanzer, A.; Vaskevich, A.; Rubinstein, I. J. Am. Chem. Soc. 2001, 123, 3177-3178. https://doi.org/10.1021/ja005703v
  17. Kalyuzhny, G.; Vaskevich, A.; Schneeweiss, M. A.; Rubinstein, I. Chem. Eur. J. 2002, 8, 3850-3857.
  18. Lahav, M.; Vaskevich, A.; Rubinstein, I. Langmuir 2004, 20, 7365-7367. https://doi.org/10.1021/la0489054
  19. Doron-Mor, I.; Barkay, Z.; Filip-Granit, N.; Vaskevich, A.; Rubinstein, I. Chem. Mater. 2004, 16, 3476-3483. https://doi.org/10.1021/cm049605a
  20. Doron-Mor, I.; Cohen, H.; Barkay, Z.; Shanzer, A.; Vaskevich, A.; Rubinstein, I. Chem. Eur. J. 2005, 11, 5555-5562. https://doi.org/10.1002/chem.200500103
  21. Ruach-Nir, I.; Bendikov, T. A.; Doron-Mor, I.; Barkay, Z.; Vaskevich, A.; Rubinstein, I. J. Am. Chem. Soc. 2007, 129, 84-92. https://doi.org/10.1021/ja064919f
  22. Karakouz, T.; Vaskevich, A.; Rubinstein, I. J. Phys. Chem. B 2008, 112, 14530-14538. https://doi.org/10.1021/jp804829t
  23. Marinakos, S. M.; Chen, S.; Chilkoti, A. Anal. Chem. 2007, 79, 5278-5283. https://doi.org/10.1021/ac0706527
  24. Mitsuishi, M.; Koishikawa, Y.; Tanaka, H.; Sato, E.; Mikayama, T.; Matsui, J.; Miyashita, T. Langmuir 2007, 23, 7472-7474. https://doi.org/10.1021/la701215t
  25. Lin, H.-Y.; Chen, C.-T.; Chen, Y.-C. Anal. Chem. 2006, 78, 6873-6878. https://doi.org/10.1021/ac060833t
  26. Frederix, F.; Friedt, J.-M.; Choi, K.-H.; Laureyn, W.; Campitelli, A.; Mondelaers, D.; Maes, G.; Borghs, G. Anal. Chem. 2003, 75, 6894-6900. https://doi.org/10.1021/ac0346609
  27. Dahlin, A.; Zach, M.; Rindzevicius, T.; Kall, M.; Sutherland, D. S.; Hook, F.; J. Am. Chem. Soc. 2005, 127, 5043-5048. https://doi.org/10.1021/ja043672o
  28. Tokareva, I.; Minko, S.; Fendler, J. H.; Hutter, E. J. Am. Chem. Soc. 2004, 126, 15950-15951. https://doi.org/10.1021/ja044575y
  29. Gluodenis, M.; Manley, C.; Foss, Jr., C. A. Anal. Chem. 1999, 71, 4554-4558. https://doi.org/10.1021/ac990639p
  30. Szunerits, S.; Das, M. R.; Boukherroub, R. J. Phys. Chem. C 2008, 112, 8239-8243. https://doi.org/10.1021/jp800478h
  31. Hu, X.; Wang, T.; Dong, S. J. Coll. Interface Sci. 2007, 316, 947- 953. https://doi.org/10.1016/j.jcis.2007.09.023
  32. Wuelfing, W. P.; Zamborini, F. P.; Templeton, A. C.; Wen, X.; Yoon, H.; Murray, R. W. Chem. Mater. 2001, 13, 87-95. https://doi.org/10.1021/cm0005440
  33. Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  34. Shon, Y.-S. Metal Nanoparticles Protected with Monolayers: Synthetic Methods. In Dekker Encyclopedia of Nanoscience and Nanotechnology; Schwarz, J. A., Ed.; Marcel Dekker: New York, 2004; pp 1-11.
  35. Isaacs, S. R.; Choo, H.; Ko, W.-B.; Shon, Y.-S. Chem. Mater. 2006, 18, 107-114. https://doi.org/10.1021/cm0518980
  36. Hicks, J. F.; Shon, Y.-S.; Murray, R. W. Langmuir 2002, 18, 2288-2294. https://doi.org/10.1021/la0156255
  37. Hao, E.; Lian, T. Chem. Mater. 2000, 12, 3392-3396. https://doi.org/10.1021/cm000565u
  38. Chan, E. W. L.; Lee, D.-C.; Ng, M.-K.; Wu, G.; Lee, K. Y. C.; Yu, L. A. J. Am. Chem. Soc. 2002, 124, 12238-12243. https://doi.org/10.1021/ja026159o
  39. Krasteva, N.; Krustev, R.; Yasuda, A.; Vossmeyer, T. Langmuir 2003, 19, 7754-7760. https://doi.org/10.1021/la0267488
  40. Luo, J.; Maye, M. M.; Han, L.; Kariuki, N. N.; Jones, V. W.; Lin, Y.; Engelhard, M. H.; Zhong, C.-J. Langmuir 2004, 10, 4254-4260.
  41. Luo, J.; Jones, V. W.; Han, L.; Maye, M. M.; Kariuki, N. N.; Zhong, C.-J. J. Phys. Chem. B 2004, 108, 9669-9677. https://doi.org/10.1021/jp037446x
  42. Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M. J. Phys. Chem. B 2003, 107, 2719-2724. https://doi.org/10.1021/jp026920g
  43. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103-1170. https://doi.org/10.1021/cr0300789
  44. Shon, Y.-S.; Lee, S.; Perry, S. S.; Lee, T. R. J. Am. Chem. Soc. 2000, 122, 1278-1281. https://doi.org/10.1021/ja991987b
  45. Karakouz, T.; Tesler, A. B.; Bendikov, T. A.; Vaskevich, A.; Rubinstein, I. Adv. Mater. 2008, 20, 3893-3899. https://doi.org/10.1002/adma.200703092
  46. Riboh, J. C.; Haes, A. J.; McFarland, A. D.; Yonzon, C. R.; Van Duyne, R. P. J. Phys. Chem. B 2003, 107, 1772-1780. https://doi.org/10.1021/jp022130v
  47. Frederix, F.; Friedt, J.-M.; Choi, K.-H.; Laureyn, W.; Campitelli, A.; Mondelaers, D.; Maes, G.; Borghs, G. Anal. Chem. 2003, 75, 6894-6900. https://doi.org/10.1021/ac0346609

Cited by

  1. Stability and Morphology of Gold Nanoisland Arrays Generated from Layer-by-Layer Assembled Nanoparticle Multilayer Films: Effects of Heating Temperature and Particle Size vol.115, pp.21, 2011, https://doi.org/10.1021/jp110531x
  2. Gold nanoisland structures integrated in a lab-on-a-chip for plasmonic detection of bovine growth hormone vol.17, pp.7, 2012, https://doi.org/10.1117/1.JBO.17.7.077001
  3. Gold Nanoparticle Assemblies on Surfaces: Reactivity Tuning through Capping-Layer and Cross-Linker Design vol.22, pp.5, 2016, https://doi.org/10.1002/chem.201503297
  4. Characterization of localized surface plasmon resonance transducers produced from Au25 nanoparticle multilayers vol.402, pp.None, 2012, https://doi.org/10.1016/j.colsurfa.2012.03.041