DOI QR코드

DOI QR Code

Long-acting Recombinant Human Granulocyte Colony Stimulating Factor (rhG-CSF) with a Trimer-Structured Polyethylene Glycol

  • Jo, Yeong-Woo (Biopharmaceutical Research Laboratory, Dong-A Pharm. Co. Ltd.) ;
  • Lee, Mee-Yong (Biopharmaceutical Research Laboratory, Dong-A Pharm. Co. Ltd.) ;
  • Choi, Yun-Kyu (Biopharmaceutical Research Laboratory, Dong-A Pharm. Co. Ltd.) ;
  • Lee, Sung-Hee (Biopharmaceutical Research Laboratory, Dong-A Pharm. Co. Ltd.) ;
  • Kang, Soo-Hyoung (Biopharmaceutical Research Laboratory, Dong-A Pharm. Co. Ltd.) ;
  • Na, Kun (Department of Biotechnology, The Catholic University of Korea) ;
  • Youn, Yu-Seok (College of Pharmacy, Pusan National University) ;
  • Choi, Eung-Chil (College of Pharmacy, Seoul National University)
  • Received : 2010.11.29
  • Accepted : 2010.12.15
  • Published : 2010.12.20

Abstract

Mono PEGylated rhG-CSF (PEG-G-CSF) prepared by utilizing unique PEG was purified and characterized by cation-exchange chromatography. A unique, trimer-structured PEG was chosen for PEGylation of rhG-CSF among various PEG moieties. The in-vitro bioactivity, stability, and pharmacokinetics of mono-PEG-G-CSF were examined and compared to those of native rhG-CSF. Mono PEG-G-CSF exhibited reduced in-vitro bioactivity to native rhG-CSF but showed an excellent in-vivo bioactivity and stability. Furthermore, it showed markedly reduced clearance in rats, thereby increasing the biological half-life by about 4.5-fold compared to that of native rhG-CSF. The results suggest that this unique, trimer-structured 23 kDa PEG can provide advantages to improve the bioactivity of therapeutic proteins in clinical use.

Keywords

References

  1. Bowen, S., Tare, N., Inoue, T., Yamasaki, M., Okabe, M., Horii, I., Eliason, J.F., 1999. Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Exp Hematol. 27, 425-432. https://doi.org/10.1016/S0301-472X(98)00051-4
  2. Bronchud, M.H., Potter, M.R., Morgenstern, G., Blasco, M.J., Scarffe, J.H., Thatcher, N., Crowther, D., Souza, L.M., Alton, N.K., Testa, N.G., 1988. In vitro and in vivo analysis of the effects of recombinant human granulocyte colony-stimulating factor in patients. Br. J. Cancer 58, 64-69. https://doi.org/10.1038/bjc.1988.163
  3. Caliceti, P., 2004. Pharmacokinetics of pegylated interferons: what is misleading? Dig. Liver Dis. 36, S334-339. https://doi.org/10.1016/S1590-8658(04)80002-1
  4. Crawford. J., 2002. Pegfilgrastim administered once per cycle reduces incidence of chemotherapy-induced neutropenia. Drugs 62, 89-98. https://doi.org/10.2165/00003495-200262001-00007
  5. Hara, K., Suda, T., Suda, J., Eguchi, M., Ihle, J.N., Nagata, S., Miura, Y., Saito, M., 1988. Bipotential murine hemopoietic cell line (NFS-60) that is responsive to IL-3, GM-CSF, G-CSF, and erythropoietin. Exp. Hematol. 16, 256-261.
  6. Hill, C.P., Osslund, T.D., Eisenberg, D., 1993. The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc. Natl. Acad. Sci. U S A. 90, 5167-5171. https://doi.org/10.1073/pnas.90.11.5167
  7. Jain, A., Jain, S.K., 2008. PEGylation: an approach for drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 25, 403-447. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v25.i5.10
  8. Kinstler, O.B., Brems, D.N., Lauren, S.L., Paige, A.G., Hamburger, J.B., Treuheit, M.J., 1996. Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm. Res. 13, 996-1002. https://doi.org/10.1023/A:1016042220817
  9. Krishnan, S., Chi, E.Y., Webb, J.N., Chang, B.S., Shan, D., Goldenberg, M., Manning, M.C., Randolph, T.W., Carpenter, J.F., 2002. Aggregation of granulocyte colony stimulating factor under physiological conditions: characterization and thermodynamic inhibition. Biochemistry 41, 6422-6431. https://doi.org/10.1021/bi012006m
  10. Kurfurst, M.M., 1992. Detection and molecular weight determination of polyethylene glycol-modified hirudin by staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem. 200, 244-248. https://doi.org/10.1016/0003-2697(92)90460-O
  11. Lee, E.N., Kim, Y.M., Lee, H.J., Park, S.W., Jung, H.Y., Lee, J.M., Ahn, Y.H., Kim, J., 2005. Stabilizing peptide fusion for solving the stability and solubility problems of therapeutic proteins. Pharm. Res. 22, 1735-1746 https://doi.org/10.1007/s11095-005-6489-4
  12. Lee, S.H., Lee, S., Youn, Y.S., Na, D.H., Chae, S.Y., Byun, Y., Lee, K.C., 2005. Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1. Bioconjug Chem. 16, 377-382. https://doi.org/10.1021/bc049735+
  13. Manavalan, P., Swope, D.L., Withy, R.M., 1992. Sequence and structural relationships in the cytokine family. J. Protein Chem. 11, 321-331. https://doi.org/10.1007/BF01024870
  14. Molineux. G., 2002. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat. Rev. 28, 13-16. https://doi.org/10.1016/S0305-7372(02)80004-4
  15. Rajan, R.S., Li, T., Aras, M., Sloey, C., Sutherland, W., Arai, H., Briddell, R., Kinstler, O., Lueras, A.M., Zhang, Y., Yeghnazar, H., Treuheit, M., Brems, D.N., 2006. Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study. Protein Sci. 15, 1063-1075. https://doi.org/10.1110/ps.052004006
  16. Ribarska, J.T., Jolevska, S.T., Panovska, A.P., Dimitrovska, A., 2008. Studying the formation of aggregates in recombinant human granulocyte-colony stimulating factor (rHuG-CSF), lenograstim, using size-exclusion chromatography and SDSPAGE. Acta Pharm. 58, 199-206. https://doi.org/10.2478/v10007-008-0003-6
  17. Ryan, S.M., Mantovani, G., Wang, X., Haddleton, D.M., Brayden, D.J., 2008. Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin. Drug Deliv. 5, 371-383. https://doi.org/10.1517/17425247.5.4.371
  18. Souza, L.M., Boone, T.C., Gabrilove, J., Lai, P.H., Zsebo, K.M., Murdock, D.C., Chazin, V.R., Bruszewski, J., Lu, H., Chen, K.K., 1986. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science. 232, 61-65. https://doi.org/10.1126/science.2420009
  19. Tsuji, J., Hirose, K., Kasahara, E., Naitoh, M., Yamamoto, I., 1985. Studies on antigenicity of the polyethylene glycol (PEG)-modified uricase. Int. J. Immunopharmacol. 7, 725-730. https://doi.org/10.1016/0192-0561(85)90158-4
  20. Werle, M., Bernkop-Schnurch, A., 2006. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 30, 351-367. https://doi.org/10.1007/s00726-005-0289-3
  21. Yamasaki, M., Asano, M., Okabe, M., Morimoto, M., Yokoo, Y., 1994. Modification of recombinant human granulocyte colony-stimulating factor (rhG-CSF) and its derivative ND 28 with polyethylene glycol. J. Biochem. 115, 814-819. https://doi.org/10.1093/oxfordjournals.jbchem.a124421
  22. Yang, Z., Wang, J., Lu, Q., Xu, J., Kobayashi, Y., Takakura, T., Takimoto, A., Yoshioka, T., Lian, C., Chen, C., Zhang, D., Zhang, Y., Li, S., Sun, X., Tan, Y., Yagi, S., Frenkel, E.P., Hoffman, R.M., 2004. PEGylation confers greatly extended halflife and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res. 64, 6673-6678. https://doi.org/10.1158/0008-5472.CAN-04-1822
  23. Yowell, S.L., Blackwell, S., 2002. Novel effects with polyethylene glycol modified pharmaceuticals. Cancer Treat. Rev. 28, 3-6. https://doi.org/10.1016/S0305-7372(02)80002-0