참고문헌
- Agu, R.U., Jorissen, M., Willems, T., Augustijns, P., Kinget, R., Verbeke, N., 2001. In-vitro nasal drug delivery studies: comparison of derivatised, fibrillar and polymerised collagen matrix-based human nasal primary culture systems for nasal drug delivery studies. J. Pharm. Pharmacol. 53, 1447-1456. https://doi.org/10.1211/0022357011777981
- Agu, R.U., Jorissen, M., Willems, T., Van den Mooter, G., Kinget, R., Verbeke, N., Augustijns, P., 2000. Safety assessment of selected cyclodextrins - effect on ciliary activity using a human cell suspension culture model exhibiting in vitro ciliogenesis. Int. J. Pharm. 193, 219-226. https://doi.org/10.1016/S0378-5173(99)00342-7
- Agu, R.U., Obimah, D., Lyzenga, W., Jorissen, M., Massoud, E., Verbeke, N., 2009. Specific aminopeptidases of excised human nasal epithelium and primary culture: a comparison of functional characteristics and gene transcripts expression. J. Pharm. Pharmacol. 61, 599-606. https://doi.org/10.1211/jpp.61.05.0008
- Agu, R.U., Vu Dang, H., Jorissen, M., Kinget, R., Verbeke, N., 2004. Metabolism and absorption enhancement of methionine enkephalin in human nasal epithelium. Peptides 25, 563-569. https://doi.org/10.1016/j.peptides.2004.02.019
- Agu, R.U., Vu Dang, H., Jorissen, M., Willems, T., Kinget, R., Verbeke, N., 2002. Nasal absorption enhancement stratigies for therapeutic peptides: an in vitro study using cultured human nasal epithelium. Int. J. Pharm. 237, 179-191. https://doi.org/10.1016/S0378-5173(02)00039-X
- Alford, B.R., Douglas Jr., R.G., Couch, R.B., 1969. Atraumatic biopsy of nasal mucosa. Arch. Otolaryngol. 90, 180-184. https://doi.org/10.1001/archotol.1969.00770030182018
- Amidi, M., Romeijn, S.G., Borchard, G., Junginger, H.E., Hennink, W.E., Jiskoot, W., 2006. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release 111, 107-116. https://doi.org/10.1016/j.jconrel.2005.11.014
- Amoako-Tuffour, M., Yeung, P.K., Agu, R.U., 2009. Permeation of losartan across human respiratory epithelium: an in vitro study with Calu-3 cells. Arch. Pharm. 59, 395-405.
- Arora, P., Sharma, S., Garg, S., 2002. Permeability issues in nasal drug delivery. Drug Discov. Today 7, 967-975. https://doi.org/10.1016/S1359-6446(02)02452-2
- Bai, S., Yang, T., Abbruscato, T.J., Ahsan, F., 2008. Evaluation of human nasal RPMI 2650 cells grown at an air-liquid interface as a model for nasal drug transport studies. J. Pharm. Sci. 97, 1165-1178. https://doi.org/10.1002/jps.21031
- Berger, J.T., Voynow, J.A., Peters, K.W., Rose, M.C., 1999. Respiratory carcinoma cell lines. MUC genes and glycoconjugates. Am. J. Respir. Cell Mol. Biol. 20, 500-510. https://doi.org/10.1165/ajrcmb.20.3.3383
- Bernstein, J.M., Yankaskas, J.R., 1994. Increased ion transport in cultured nasal polyp epithelial cells. Arch. Otolaryngol. Head Neck Surg. 120, 993-996. https://doi.org/10.1001/archotol.1994.01880330071013
- Bitko, V., Barik, S., 2008. Nasal delivery of siRNA. Methods Mol. Biol. 442, 75-82. https://doi.org/10.1007/978-1-59745-191-8_6
-
Boucher, R.C., Cotton, C.U., Gatzy, J.T., Knowles, M.R., 1988. Evidence for reduced
$Cl^-$ and increased$Na^+$ permeability in cystic fibrosis human primary cell cultures. J. Physiol. 405, 77-103. https://doi.org/10.1113/jphysiol.1988.sp017322 - Boucher, R.C., Yankaskas, J.R., Cotton, C.U., Knowles, M.R., Stutts, M.J., 1987. Cell culture approaches to the investigation of human airway ion transport. Eur. J. Respir. Dis. Suppl. 153, 59-67.
- Bremer, S., Hoof, T., Wilke, M., Busche, R., Scholte, B., Riordan, J.R., Maass, G., Tummler, B., 1992. Quantitative expression patterns of multidrug resistance P-glycoprotein (MDR1) and differentially spliced cyctic-fibrosis transmembrane-conductance regulator mRNA transcripts in human epithelia. Eur. J. Biochem. 206, 137-149. https://doi.org/10.1111/j.1432-1033.1992.tb16911.x
- Brouillard, F., Tondelier, D., Edelman, A., Baudouin-Legros, M., 2001. Drug resistance induced by ouabain via the stimulation of MDR1 gene expression in human carcinomatous pulmonary cells. Cancer Res. 61, 1693-1698.
- Bur, M., Huwer, H., Muys, L., Lehr, C.M., 2010. Drug transport across pulmonary epithelial cell monolayers: effects of particle size, apical liquid volume, and deposition technique. J. Aerosol. Med. Pulm. Drug Deliv. 23, 119-127. https://doi.org/10.1089/jamp.2009.0757
- Chemuturi, N.V., Donovan, M.D., 2007. Role of organic cation transporters in dopamine uptake across olfactory and nasal respiratory tissues. Mol. Pharm. 4, 936-942. https://doi.org/10.1021/mp070032u
- Chen, M., Li, X.R., Zhou, Y.X., Yang, K.W., Chen, X.W., Deng, Q., Liu, Y., Ren, L.J., 2009. Improved absorption of salmon calcitonin by ultraflexible liposomes through intranasal delivery. Peptides. 30, 1288-1295. https://doi.org/10.1016/j.peptides.2009.03.018
- Chen, Y., Zhao, Y.H., Wu, R., 2001. Differential regulation of airway mucin gene expression and mucin secretion by extracellular nucleotide triphosphates. Am. J. Respir. Cell Mol. Biol. 25, 409-417. https://doi.org/10.1165/ajrcmb.25.4.4413
- Cho, E., Gwak, H., Chun, I., 2008. Formulation and evaluation of ondansetron nasal delivery systems. Int. J. Pharm. 349, 101-107. https://doi.org/10.1016/j.ijpharm.2007.07.028
- Cho, H.J., Balakrishnan, P., Shim, W.S., Chung, S.J., Shim, C.K., Kim, D.D. 2010. Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron-cyclodextrin complex and carboxymethylcellulose for intranasal delivery. Int. J. Pharm. 400, 59-65. https://doi.org/10.1016/j.ijpharm.2010.08.030
- Cho, H.J., Balakrishnan, P., Park, E.K., Song, K.W., Hong, S.S., Jang, T.Y., Kim, K.S., Chung, S.J., Shim, C.K., Kim, D.D. 2011a. Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J. Pharm. Sci. in press.
- Cho, H.J., Choi, M.K., Lin, H., Kim, J.S., Chung, S.J., Shim, C.K., Kim, D.D. 2011. Expression and functional activity of P-glycoprotein (P-gp) in passaged primary human nasal epithelial (HNE) cell monolayers cultured by the air-liquid interface (ALI) method for nasal drug transport study. J. Pharm. Pharmacol.
- Christensen, D., Foged, C., Rosenkrands, I., Lundberg, C.V., Andersen, P., Agger, E.M., Nielsen, H.M., 2010. CAF01 liposomes as a mucosal vaccine adjuvant: In vitro and in vivo investigations. Int. J. Pharm. 390, 19-24. https://doi.org/10.1016/j.ijpharm.2009.10.043
- Cornaz, A.L., Buri, P., 1994. Nasal mucosa as an absorption barrier. Eur. J. Pharm. Biopharm. 40, 261-270.
- Costantino, H.R., Illum, L., Brandt, G., Johnson, P.H., Quay, S.C., 2007. Intranasal delivery: physicochemical and therapeutic aspects. Int. J. Pharm. 337, 1-24. https://doi.org/10.1016/j.ijpharm.2007.03.025
- Coste, A., Rateau, J., Roudot-Thoraval, F., Chapelin, C., Gilain, L., Poron, F., Peynegre, R., Bernaudin, J., Escudier, E., 1996. Increased epithelial cell proliferation in nasal polyps. Arch. Otolaryngol. Head Neck Surg. 122, 432. https://doi.org/10.1001/archotol.1996.01890160072013
- Cozens, A.L., Yezzi, M.J., Kunzelmann, K., Ohrui, T., Chin, L., Eng, K., Finkbeiner, W.E., Widdicombe, J.H., Gruenert, D.C., 1994. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 10, 38-47. https://doi.org/10.1165/ajrcmb.10.1.7507342
- De Fraissinette, A., Brun, R., Felix, H., Vonderscher, J., Rummelt, A., 1995. Evaluation of the human cell line RPMI 2650 as an in vitro nasal model. Rhinology. 33, 194-198.
- Dimova, S., Vlaeminck, V., Brewster, M.E., Noppe, M., Jorissen, M., Augustijns, P., 2005. Stable ciliary activity in human nasal epithelial cells grown in a perfusion system. Int. J. Pharm. 292, 157-168. https://doi.org/10.1016/j.ijpharm.2004.11.030
- Ehrhardt, C., Kneuer, C., Fiegel, J., Hanes, J., Schaefer, U.F., Kim, K.J., Lehr, C.M., 2002. Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell. Tissue. Res. 308, 391-400. https://doi.org/10.1007/s00441-002-0548-5
- Ehrhadt, C., Kneuer, C., Laue, M., Schaefer, U.F., Kim, K.J., Lehr, C.M., 2003. 16HBE14o- human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein, and caveolin-1. Pharm. Res. 20, 545-551. https://doi.org/10.1023/A:1023230328687
- Endter, S., Francombe, D., Ehrhardt, C., Gumbleton, M., 2009. RTPCR analysis of ABC, SLC and SLCO drug transporters in human lung epithelial cell models. J. Pharm. Pharmacol. 61, 583-591. https://doi.org/10.1211/jpp.61.05.0006
- Florea, B.I., van der Sandt, I.C., Schrier, S.M., Kooiman, K., Deryckere, K., de Boer, A.G., Junginger, H.E., Borchard, G., 2001. Evidence of P-glycoprotein mediated apical to basolateral transport of flunisolide in human broncho-tracheal epithelial cells (Calu-3). Br. J. Pharmacol. 134, 1555-1563. https://doi.org/10.1038/sj.bjp.0704390
- Foster, K.A., Avery, M.L., Yazdanian, M., Audus, K.L., 2000. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int. J. Pharm. 208, 1-11. https://doi.org/10.1016/S0378-5173(00)00452-X
- Genter, M.B., Krishan, M., Augustine, L.M., Cherrington, N.J., 2010. Drug transporter expression and localization in rat nasal respiratory and olfactory mucosa and olfactory bulb. Drug Metab. Dispos. 38, 1644-1647. https://doi.org/10.1124/dmd.110.034611
- Gervasi, P., Longo, V., Naldi, F., Panattoni, G., Ursino, F., 1991. Xenobiotic-metabolizing enzymes in human respiratory nasal mucosa. Biochem. Pharmacol. 41, 177-184. https://doi.org/10.1016/0006-2952(91)90474-J
- Getchell, M.L., Chen, Y., Ding, X., Sparks, D.L., Getchell, T.V., 1993. Immunohistochemical localization of a cytochrome P-450 isozyme in human nasal mucosa: age-related trends. Ann. Otol. Rhinol. Laryngol. 102, 368-374. https://doi.org/10.1177/000348949310200509
- Gray, T.E., Guzman, K., Davis, C.W., Abdullah, L.H., Nettesheim, P., 1996. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 14, 104-112. https://doi.org/10.1165/ajrcmb.14.1.8534481
- Gray, T., Koo, J.S., Nettesheim, P., 2001. Regulation of mucous differentiation and mucin gene expression in the tracheobronchial epithelium. Toxicology 160, 35-46. https://doi.org/10.1016/S0300-483X(00)00455-8
- Gruenert, D.C., Basbaum, C.B., Widdicombe, J.H., 1990. Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions. In Vitro Cell. Dev. Biol. 26, 411-418. https://doi.org/10.1007/BF02623833
- Han, D., Wang, N., Zhang, L., 2009. The effect of myrtol standardized on human nasal ciliary beat frequency and mucociliary transport time. Am. J. Rhinol. Allergy 23, 610-614. https://doi.org/10.2500/ajra.2009.23.3401
- Hanamure, Y., Deguchi, K., Ohyama, M., 1994. Ciliogenesis and mucus synthesis in cultured human respiratory epithelial cells. Ann. Otol. Rhinol. Laryngol. 103, 889-895. https://doi.org/10.1177/000348949410301111
- Harikarnpakdee, S., Lipipun, V., Sutanthavibul, N., Ritthidej, G.C., 2008. Spray-dried mucoadhesive microspheres: preparation and transport through nasal cell monolayer. AAPS Pharm-SciTech. 7, 12.
- Henriksson, G., Norlander, T., Zheng, X., Stierna, P., Westrin, K.M., 1997. Expression of P-glycoprotein 170 in nasal mucosa may be increased with topical steroids. Am. J. Rhinol. 11, 317-321. https://doi.org/10.2500/105065897781446603
- Hofmann, T., Reinisch, S., Gerstenberger, C., Koele, W., Gugatschka, M., Wolf, G., 2010. Influence of topical antifungal drugs on ciliary beat frequency of human nasal mucosa: an in vitro study. Laryngoscope. 120, 1444-1448. https://doi.org/10.1002/lary.20965
- Hoang, V.D., Uchenna, A.R., Mark, J., Renaat, K., Norbert, V., 2002. Characterization of human nasal primary culture systems to investigate peptide metabolism. Int. J. Pharm. 238, 247-256. https://doi.org/10.1016/S0378-5173(02)00077-7
- Hood, A.T., Currie, D., Garte, S.J., 1987. Establishment of a rat nasal epithelial tumor cell line. In Vitro Cell. Dev. Biol. 23, 274-278. https://doi.org/10.1007/BF02623710
- Hosoya, K., Kubo, H., Natsume, H., Sugibayashi, K., Morimoto, Y., 1994. Evaluation of enhancers to increase nasal absorption using Ussing chamber technique. Biol. Pharm. Bull. 17, 316-322. https://doi.org/10.1248/bpb.17.316
- Howard, K.A., Rahbek, U.L., Liu, X., Damgaard, C.K., Glud, S.Z., Andersen, M.O., Hovgaard, M.B., Schmitz, A., Nyengaard, J.R., Besenbacher, F., Kjems, J., 2006. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476-484. https://doi.org/10.1016/j.ymthe.2006.04.010
- Huh, Y., Cho, H.J., Yoon, I.S., Choi, M.K., Kim, J.S., Oh, E., Chung, S.J., Shim, C.K., Kim, D.D., 2010. Preparation and evaluation of spary-dried hyaluronic acid microspheres intranasal delivery of fexofenadine hydrochloride. Eur. J. Pharm. Sci. 40, 9-15. https://doi.org/10.1016/j.ejps.2010.02.002
- Hull, J., Harris, A., 1994. Limitations of cell culture of airway epithelium collected by a nasal brushing technique. In Vitro Cell. Dev. Biol. 30A, 488-489.
- Jintapattanakit, A., Peungvicha, P., Sailasuta, A., Kissel, T., Junyaprasert, V.B., 2010. Nasal absorption and local tissue reaction of insulin nanocomplexes of trimethyl chitosan derivatives in rats. J. Pharm. Pharmacol. 62, 583-591. https://doi.org/10.1211/jpp.62.05.0004
- Kaler, G., Truong, D.M., Sweeney, D.E., Logan, D.W., Nagle, M., Wu, W., Eraly, S.A., Nigam, S.K., 2006. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem. Biophys. Res. Commun. 351, 872-876. https://doi.org/10.1016/j.bbrc.2006.10.136
- Kandimallar, K.K., Donovan, M.D., 2005. Localization and differential activity of P-glycoprotein in the bovine olfactory nasal respiratory mucosae. Pharm. Res. 22, 1121-1128. https://doi.org/10.1007/s11095-005-5420-3
- Kienast, K., Riechelmann, H., Knorst, M., Schlegel, J., Muller-Quernheim, J., Schellenberg, J., Ferlinz, R. 1994. An experimental model for the exposure of human ciliated cells to sulfur dioxide at different concentrations. Clin. Investig. 72, 215-219.
- Kissel, T., Werner, U., 1998. Nasal delivery of peptides: an in vitro cell culture model for the investigation of transport and metabolism in human nasal epithelium. J. Control. Release 53, 195-203. https://doi.org/10.1016/S0168-3659(97)00253-8
- Koizumi, J., Kojima, T., Ogasawara, N., Kamekura, R., Kurose, M., Go, M., Harimaya, A., Murata, M., Osanai, M., Chiba, H., Himi, T., Sawada, N., 2008. Protein kinase C enhances tight junction barrier function of human nasal epithelial cells in primary culture by transcriptional regulation. Mol. Pharmacol. 74, 432-442. https://doi.org/10.1124/mol.107.043711
- Lang, S., Langguth, P., Oschmann, R., Traving, B., Merkle, H.P., 1996. Transport and metabolic pathway of thymocartin (TP4) in excised bovine nasal mucosa. J. Pharm. Pharmacol. 48, 1190-1196. https://doi.org/10.1111/j.2042-7158.1996.tb03919.x
- Lazard, D.S., Moore, A., Hupertan, V., Martin, C., Escabasse, V., Dreyfus, P., Burgel, P.R., Amselem, S., Escudier, E., Coste, A., 2009. Muco-ciliary differentiation of nasal epithelial cells is decreased after wound healing in vitro. Allergy 64, 1136-1143. https://doi.org/10.1111/j.1398-9995.2009.02003.x
- Lee, M.K., Yoo, J.W., Lin, H., Kim, Y.S., Kim, D.D., Choi, Y.M., Park, S.K., Lee, C.H., Roh, H.J., 2005. Air-liquid interface culture of serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Drug Deliv. 12, 305-311. https://doi.org/10.1080/10717540500177009
- Leitner, V.M., Guggi, D., Krauland, A.H., Bernkop-Schnurch, A., 2004. Nasal delivery of human growth hormone: in vitro and in vivo evaluation of a thiomer/glutathione microparticulate delivery system. J. Control. Release 100, 87-95. https://doi.org/10.1016/j.jconrel.2004.08.001
- Li, L., Mathias, N.R., Heran, C.L., Moench, P., Wall, D.A., Smith, R.L., 2006. Carbopol-mediated paracellular transport enhancement in Calu-3 cell layers. J. Pharm. Sci. 95, 326-335. https://doi.org/10.1002/jps.20541
- Lin, H., Gebhardt, M., Bian, S., Kwon, K.A., Shim, C.K., Chung, S.J., Kim, D.D., 2007. Enhancing effect of surfactants on fexofenadine.HCl transport across the human nasal epithelial cell monolayer. Int. J. Pharm. 330, 23-31. https://doi.org/10.1016/j.ijpharm.2006.08.043
- Lin, H., Li, H., Cho, H.J., Bian, S., Roh, H.J., Lee, M.K., Kim, J.S., Chung, S.J., Shim, C.K., Kim, D.D., 2007b. Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J. Pharm. Sci. 96, 341-350. https://doi.org/10.1002/jps.20803
- Lin, H., Yoo, J.W., Roh, H.J., Lee, M.K., Chung, S.J., Shim, C.K., Kim, D.D., 2005. Transport of anti-allergic drugs across the passage cultured human nasal epithelial cell monolayer. Eur. J. Pharm. Sci. 26, 203-210. https://doi.org/10.1016/j.ejps.2005.06.003
- Mallant, R., Jorissen, M., Augustijns, P., 2008. Beneficial effect of antibiotics on ciliary beat frequency of human nasal epithelial cells exposed to bacterial toxins. J. Pharm. Pharmacol. 60, 437-443. https://doi.org/10.1211/jpp.60.4.0005
- Mallant, R., Vlaeminck, V., Jorissen, M., Augustijns, P., 2009. An improved primary human nasal cell culture for the simultaneous determination of transepithelial transport and ciliary beat frequency. J. Pharm. Pharmacol. 61, 883-890. https://doi.org/10.1211/jpp.61.07.0007
- Manford, F., Tronde, A., Jeppsson A.B., Patel, N., Johansson, F., Forbes, B., 2005. Drug permeability in 16HBE14o- airway cell layers correlates with absorption from the isolated perfused rat lung. Eur. J. Pharm. Sci. 26, 414-420. https://doi.org/10.1016/j.ejps.2005.07.010
- Marttin, E., Verhoef, J.C., Merkus, F.W., 1998. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J. Drug Target. 6, 17-36. https://doi.org/10.3109/10611869808997878
- Mathia, N.R., Timoszyk, J., Stetsko, P.I., Megill, J.R., Smith R.L., Wall, D.A., 2002. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J. Drug Target. 10, 31-40. https://doi.org/10.1080/10611860290007504
- Minn, A., Leclerc, S., Heydel, J.M., Denizot, C., Cattarelli, M., Netter, P., Gradinaru, D., 2002. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. J. Drug Target. 10, 285-296. https://doi.org/10.1080/713714452
- Noruddin, N.A.A., Saim, A.B., Chua, K.H., Idrus, R., 2007. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique. Laryngoscope 117, 2139-2145. https://doi.org/10.1097/MLG.0b013e3181453a1e
- Otsuka, H., Dolovich, J., Richardson, M., Bienenstock, J., Denburg, J.A., 1987. Metachromatic cell progenitors and specific growth and differentiation factors in human nasal mucosa and polyps. Am. Rev. Respir. Dis. 136, 710-717. https://doi.org/10.1164/ajrccm/136.3.710
- Pipkorn, U., Karlsson, G., Enerback, L., 1988. A brush method to harvest cells from the nasal mucosa for microscopic and biochemical analysis. J. Immunol. Methods 112, 37-42. https://doi.org/10.1016/0022-1759(88)90030-0
- Pipkorn, U., Karlsson, G., 1988. Methods for obtaining specimens from the nasal mucosa for morphological and biochemical analysis. Eur. Respir. J. 1, 856-862.
- Pires, A., Fortuna, A., Alves, G., Falcao, A., 2009. Intranasal drug delivery: how, why and what for? J. Pharm. Pharm. Sci. 12, 288-311. https://doi.org/10.18433/J3NC79
- Robinson, C.B., Wu, R., 1993. Mucin synthesis and secretion by cultured tracheal cells: effects of collagen substratum thickness. In Vitro Cell. Dev. Biol. Anim. 29A, 469-477.
- Roh, H.J., Goh, E.K., Wang, S.G., Chon, K.M., Yoon, J.H., Kim, Y.S., 1999. Serially passaged normal human nasal epithelial cells: morphology and mucous secretory differentiation. Korean. J. Rhinol. 6, 107-112.
- Sarkar, M.A., 1992. Drug metabolism in the nasal mucosa. Pharm Res. 9, 1-9. https://doi.org/10.1023/A:1018911206646
- Merkle, H.P., Ditzinger, G., Lang, S.R., Peter, H., Schmidt, M.C., 1998. In vitro cell models to study nasal mucosal permeability and metabolism. Adv. Drug Deliv. Rev. 29, 51-79. https://doi.org/10.1016/S0169-409X(97)00061-6
- Seki, T., Kanbayashi, H., Chono, S., Tabata, Y., Morimoto, K., 2007. Effects of sperminated gelatin on the nasal absorption of insulin. Int. J. Pharm. 338, 213-218. https://doi.org/10.1016/j.ijpharm.2007.02.004
- Slutter, B., Bal, S., Keijzer, C., Mallants, R., Hagenaars, N., Que, I., Kaijzel, E., van Eden, W., Augustijns, P., Lowik, C., Bouwstra, J., Broere, F., Jiskoot, W., 2010. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nano-particle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28, 6282-6291. https://doi.org/10.1016/j.vaccine.2010.06.121
- Steele, V.E., Arnold, J.T., 1985. Isolation and long-term culture of rat, rabbit, and human nasal terbinate epithelial cells. In Vitro Cell. Dev. Biol. 21, 681-687. https://doi.org/10.1007/BF02620922
- Suptawiwat, O., Tantilipikorn, P., Boonarkart, C., Lumyongsatien, J., Uiprasertkul, M., Puthavathana, P., Auewarakul, P., Brown, J., 2010. Enhanced susceptibility of nasal polyp tissues to avian and human influenza viruses. PLoS One 5: e12973 https://doi.org/10.1371/journal.pone.0012973
- Teijeiro-Osorio, D., Remunan-Lopez, C., Alonso, M.J., 2009. New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules 10, 243-249. https://doi.org/10.1021/bm800975j
- Usui, S., Shimizu, T., Kishioka, C., Fujita, K., Sakakura, Y., 2000. Secretory cell differentiation and mucus secretion in cultures of human nasal epithelial cells: use of a monoclonal antibody to study human nasal mucin. Ann. Otol. Rhinol. Laryngol. 109, 271-277. https://doi.org/10.1177/000348940010900307
- Vetter, A., Martien, R., Bernkop-Schnurch, A., 2010. Thiolated polycarbophil as an adjuvant for permeation enhancement in nasal delivery of antisense nucleotides. J. Pharm. Sci. 99, 1427-1439. https://doi.org/10.1002/jps.21887
- Vu Dang, H., Agu, R.U., Jorissen, M., Kinget, R., Verbeke, N., 2002. Characterization of human nasal primary culture systems to investigate peptide metabolism. Int. J. Pharm. 238. 247-256. https://doi.org/10.1016/S0378-5173(02)00077-7
- Wadell, C., Bjork, E., Camber, O., 1999. Nasal drug delivery-evaluation of an in vitro model using porcine nasal mucosa. Eur. J. Pharm. Sci. 7, 197-206. https://doi.org/10.1016/S0928-0987(98)00023-2
- Wadell, C., Bjork, E., Camber, O., 2003. Permeability of porcine nasal mucosa correlated with human nasal absorption. Eur. J. Pharm. Sci. 18, 47-53. https://doi.org/10.1016/S0928-0987(02)00240-3
- Wengst, A., Reichl, S., 2010. RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. Eur. J. Pharm. Biopharm. 74, 290-297. https://doi.org/10.1016/j.ejpb.2009.08.008
- Werner, U., Kissel, T., 1995. Development of a human nasal epithelial cell culture model and its suitability for transport and metabolism studies under in vitro conditions. Pharm. Res. 12, 565-571. https://doi.org/10.1023/A:1016210231121
- Werner, U., Kissel, T., 1996. In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharm. Res. 13, 978-988. https://doi.org/10.1023/A:1016038119909
- Wilk-Blaszczak, M.A., French, A.S., Man, S.F., 1992. Halide permeation through 10 pS and 20 pS anion channels in human airway epithelial cells. Biochim. Biophys. Acta. 1104, 160-166. https://doi.org/10.1016/0005-2736(92)90145-C
- Wioland, M.A., Fleury-Feith, J., Corlieu, P., Commo, F., Monceaux, G., Lacau-St-Guily, J., Bernaudin, J.F., 2000. CFTR, MDR1, and MRP1 immunolocalization in normal human nasal respiratory mucosa. J. Histochem. Cytochem. 48, 1215-1222. https://doi.org/10.1177/002215540004800905
- Witschi, C., Mrsny, R.J., 1999. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm. Res. 16, 382-390. https://doi.org/10.1023/A:1018869601502
- Wu, R., Yankaskas, J., Cheng, E., Knowles, M.R., Boucher, R., 1985. Growth and differentiation of human nasal epithelial cells in culture. Serum-free, hormone-supplemented medium and proteoglycan synthesis. Am. Rev. Respir. Dis. 132, 311-320.
- Wuthrich, P., Buri, P., 1989. The transnasal route of drug administration. Aspects of nasal anatomy and physiology. Pharm. Acta. Helv. 64, 322-331.
- Yang, T., Hussain, A., Paulson, J., Abbruscato, T.J., Ahsan, F., 2004. Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm. Res. 21, 1127-1136. https://doi.org/10.1023/B:PHAM.0000032998.84488.7a
- Yankaskas, J.R., Cotton, C.U., Knowles, M.R., Gatzy, J.T., Boucher, R.C., 1985. Culture of human nasal epithelial cells on collagen matrix supports. A comparison of bioelectric properties of normal and cystic fibrosis epithelia. Am. Rev. Respir. Dis. 132, 1281-1287.
- Yeo, N.K., Jang, Y.J., 2010. Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope 120, 346-352.
- Yoo, J.W., Kim, Y.S., Lee, S.H., Lee, M.K., Roh, H.J., Jhun, B.H., Lee, C.H., Kim, D.D., 2003. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharm. Res. 20, 1690-1696. https://doi.org/10.1023/A:1026112107100
- Yoon, J.H., Kim, K.S., Kim, S.S., Lee, J.G., Park, I.Y., 2000. Secretory differentiation of serially passaged normal human nasal epithelial cells by retinoic acid: expression of mucin and lysozyme. Ann. Otol. Rhinol. Laryngol. 109, 594-601. https://doi.org/10.1177/000348940010900612
- Yu, H., Kim, K., 2009. Direct nose-to-brain transfer of a growth hormone releasing neuropeptide, hexarelin after intranasal administration to rabbits. Int. J. Pharm. 378, 73-79. https://doi.org/10.1016/j.ijpharm.2009.05.057
- Zhou, H., Wang, X., Brighton, L., Hazucha, M., Jaspers, I., Carson, J.L., 2009. Increased nasal epithelial ciliary beat frequency associated with lifestyle tobacco smoke exposure. Inhal. Toxicol. 21, 875-881. https://doi.org/10.1080/08958370802555898
- Zuckerman, J.D., Lee, W.Y., DelGaudio, J.M., Moore, C.E., Nava, P., Nusrat, A., Parkos, C.A., 2008. Pathophysiology of nasal polyposis: the role of desmosomal junctions. Am. J. Rhinol. 22, 589-597. https://doi.org/10.2500/ajr.2008.22.3235
피인용 문헌
- Primary Air–Liquid Interface Culture of Nasal Epithelium for Nasal Drug Delivery vol.13, pp.7, 2016, https://doi.org/10.1021/acs.molpharmaceut.5b00852
- Is RPMI 2650 a Suitable In Vitro Nasal Model for Drug Transport Studies? pp.2107-0180, 2017, https://doi.org/10.1007/s13318-017-0426-x