Evaluation of the Corrosion Resistance of Steel Coated with Zinc Using a Cr-free Coating Solution as a Function of Heat Treatment Time

Cr-free 코팅액에 의한 아연도금강판의 건조시간에 따른 내식특성

  • Seo, Hyun-Soo (Defence Agency for Technology and Quality) ;
  • Moon, Hee-Joon (Graduate School, Pukyong National University) ;
  • Kim, Jong-Soon (NGE Tech Ltd) ;
  • Ahn, Seok-Hwan (Bukyong Education Center for Vehicle Safety Component Technology, Pukyong National University) ;
  • Moon, Chang-Kwon (Materials Science and Engineering, Pukyong National University) ;
  • Nam, Ki-Woo (Materials Science and Engineering, Pukyong National University)
  • 서현수 (국방기술품질원) ;
  • 문희준 (부경대학교 대학원) ;
  • 김종순 (엔지텍) ;
  • 안석환 (부경대학교 수송기계안전편의융합부품소재인재양성센터) ;
  • 문창권 (부경대학교 신소재공학부) ;
  • 남기우 (부경대학교 신소재공학부)
  • Received : 2010.07.02
  • Accepted : 2010.09.10
  • Published : 2010.10.31

Abstract

Chromate conversion coating is a coating technique used to passivate aluminum, zinc, cadmium, copper, silver, magnesium, tin, and their alloys to slow corrosion. The process uses various toxic chromium compounds, which may include hexavalent chromium. The industry is developing less toxic alternatives in order to comply with substance restriction legislation, such as RoHS. One alternative is to develop a Cr-free coating solution. In this study, eco-friendly, Cr-free solutions (urethane solution S-700, organic/inorganic solution with Si LRO-317) were used. Test specimens were dried in a drying oven at $190^{\circ}C$ for 3, 5, 7, and 9 minutes. Corrosion resistance was evaluated using a salt spray test for 72 hours. The results show that the optimum corrosion resistance was achieved at $190^{\circ}C$ for five minutes for EGI and three or five minutes for HDGI, respectively. The adhesive properties of the two types of coating solutions were superior regardless of drying time.

Keywords

References

  1. 김만, 이종재, 김대영, 박상언, 권식철 (2004). “친환경성 경질 3가 크롬도금의 연구동향”, 한국표면공학회지, 제37권, 제3호, pp 179-184.
  2. 김수원, 이철태 (2006). “아연도금용 친환경 3가 크로메이트 표면처리기술”, 한국공업화학회지, 제17권, 제5호, pp 433-442.
  3. 김형준 (1993). “고내식성 내지문 EGI 강판 개발”, 한국표면공학회지, 제26권, 제6호, pp 307-315.
  4. 박영준 (2007). “Cr-free 처리 용융아연도금강판의 흑변 및 백청 현상 연구”, 포스코 연구논문, 제12권, 제1호, pp 106-110.
  5. 이석규, 최영민, 이윤주 (1995). “최근 용융아연도금강판의 크로메이트 처리 기술 개발 동향”, 한국부식방식학회지, 제24권, pp 201-212.
  6. 이종두 (2006). Cr-free 차세대 나노코팅액 개발에 관한 연구, 환경부(나노코) 연구보고서.
  7. 이철태 (2007). “3가 크롬황산염의 크로메이트에 의한 아연도금 내식성 증대”, 한국공업화학회지, 제18권, 제3호, pp 296-302.
  8. KS D 9502 (2009). 염수 분무 시험방법, 기술표준원.
  9. ASTM D3359-09. Standard Test Methods for Measuring Adhesion by Tape Test.
  10. Bajat, J.B., Miskovic-Stankovic, V.B., Bibic, N., Drazic, D.M. (2007). ”The Influence of Zinc Surface Pretreatment on the Adhesion of Epoxy Coating Electrodeposited on Hot-di p Galvanized Steel”, Progress in Organic Coating Vol 58, pp 323-330. https://doi.org/10.1016/j.porgcoat.2007.01.011
  11. Bierwagen, G., Brown, R., Battocchi, D. and Hayes, S. (2010). ”Active Metal-based Corrosion Protective Coating Systems for Aircraft Requiring No-chromate Pretreatment”, Progress in Organic Coatings, Vol 67, pp 195-208. https://doi.org/10.1016/j.porgcoat.2009.10.009
  12. Buchheit, R.G., Guan, H., Mahajanam, S. and Wong, Fariaty. (2003). ”Active Corrosion Protection and Corrosion Sensing in Chromate-free Organic Coatings”, Progress in Organic Coatings, Vol 47, pp 174-182. https://doi.org/10.1016/j.porgcoat.2003.08.003
  13. Deflorian, F., Rossi, S., Fedrizzi, L. and Bonora, P.L. (2005). ”EIS Study of Organic Coating on Zinc Surface Pretreated with Environmentally Friendly Products”, Progress in Organic Coatings, Vol 52, pp 271-279. https://doi.org/10.1016/j.porgcoat.2004.04.005
  14. JIS K 5674 (2008). Lead-free, Chromium-free anticorrosive paints, Japanese Standards Association.
  15. Maeda, S. and Yamamoto, M. (1998). ”The Role of Chromate Treatment After Phosphating in Paint Adhesion”, Progress in Organic Coatings, Vol 33, pp 83-89. https://doi.org/10.1016/S0300-9440(98)00014-9
  16. Steven, J.H., Lowe, C., James, T.M. and John, F.W. (2005). ”Migration and Segregation Phenomena of a Silicone Additive in a Multilayer Organic Coating”, Progress in Organic Coatings, Vol 54, pp 104-112. https://doi.org/10.1016/j.porgcoat.2005.04.007
  17. The Japan Iron and Steel Federation (2005). Handbook for Zn coating steel.
  18. Voevodin, N.N., Balbyshev, V.N. and Donley, M.S. (2005). ”Investigation of Corrosion Protection Performance of Sol-gel Coatings on AA2024-T3”, Progress in Organic Coatings, Vol 52, pp 28-33. https://doi.org/10.1016/j.porgcoat.2004.05.006
  19. Wang, D. and Bierwagen, G.P. (2009). ”Sol-gel Coatings on Metals for Corrosion”, Progress in Organic Coatings, Vol 64, pp 327-338. https://doi.org/10.1016/j.porgcoat.2008.08.010
  20. Yang, H., Kong, X., Lu, W., Liu, Y., Guo, J. and Liu, S. (2010). ”High Anticorrosion Chromate-free Passive Films Made by Titanate and Waterborne Polyurethane on Galvanized Steel Sheet”, Progress in Organic Coatings, Vol 67, pp 375-380. https://doi.org/10.1016/j.porgcoat.2010.01.001
  21. Zhao, J., Xia, L., Sehgal, A., Lu, D., McCreery, R.L. and Frankel, G.S. (2001). ”Effects of Chromate and Chromate Conversion Coatings on Corrosion of Aluminum Alloy 2024-T3”, Surface and Coatings Technology, Vol 140, pp 51-57.
  22. Zheludkevich, M.L., Miranda Salvado, I. and Ferreira, M.G.S. (2005). ”Sol-gel Coatings for Corrosion Protection of Metals”, J. Mater. Chem., Vol 15, pp 5099-5111. https://doi.org/10.1039/b419153f