References
- M. Tatsumi, A. Yamamoto, "Advanced PWR Core Calculation based on Multi-group Nodal-transport Method in Three-dimensional Pin-by-pin Geometry," J. Nucl. Sci. Technol., 40, 376 (2003). https://doi.org/10.3327/jnst.40.376
- R. E. MacFarlane. RSICC Peripheral Shielding Routine Collection : NJOY99.0, Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data. Oak Ridge National Laboratory. PSR-480 NJOY99.0.
- M. B. Chadwick et al., “ENDF/B-VII.0 Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology,” Special Issue on Evaluated Nuclear Data File ENDF/B-VII.0 Nuclear Data Sheets, 107(12), 2931–3059 (December 2006). https://doi.org/10.1016/j.nds.2006.11.001
- E. Sartori, Standard Energy Group Structures Of Cross Section Libraries For Reactor Shielding, Reactor Cell and Fusion Neutronics Applications: VITAMIN-J, ECCO-33, ECCO-2000 and XMAS, JEF/DOC-315, Revision 3, NEA Data Bank, Gif-sur-Yvette Cedex, France, December 11, 1990.
- T. Ushio, T. Takeda, M. Mori, “Neutron Anisotropic Scattering Effect in Heterogeneous Cell Calculations of Light Water Reactors,” J. Nucl. Sci. Technol., 40, 464 (2003). https://doi.org/10.3327/jnst.40.464
- N. Sugimura, A. Yamamoto, “Resonance Treatment Based on Ultra-fine-group Spectrum Calculation in the AEGIS code,” J. Nucl. Sci. Technol., 44, 958 (2007). https://doi.org/10.3327/jnst.44.958
- J. F. Briesmeister, Ed., MCNPTM – A General Monte Carlo N-Particle Transport Code, LA-13709-M, March, 2000, (2000).
- T. Mori, M. Nakagawa, MVP/GVMP: General Purpose Monte-carlo Codes for Neutron and Photon Transport Calculations based on Continuous Energy and Multigroup Methods,” JAERI-DATA/Code 95-007, (1994).
- A. Yamamoto, K. Tada, N. Sugimura, T. Ushio, M. Mori, “Generation of Cross Section Library for Lattice Physics Code, AEGIS,” Proc. Physor2006, Vancouver, Canada, Sep,10-14, 2006, (2006). [CD-ROM]
- A. M. Weinberg, E. P. Wigner, “The Physical Theory of Neutron Chain Reactors,” The University of Chicago Press, Chicago (1958).
- M. Tabuchi, N. Sugimura, T. Ushio et al., “Verification of the Resonance Calculation model for Rod Cluster Control Based on Ultra-fine-group Spectrum Calculation in the AEGIS code,” Proc. International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, May 3-7, 2009, (2009). [CD-ROM]
- R. J. J. Stamm’ler, M. J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design, Academic Press, London, ISBN0-12-663220-7 (1983).
- A. Yamamoto, N. Sugimura, T. Ushio, “Calculation Models of AEGIS, an Advanced Neutronics Solver of Next Generation,” Trans. Am. Nucl. Soc., 92, 631 (2005).
- N. Sugimura, A. Yamamoto, “Evaluation of Dancoff Factors in Complicated Geometry using the Method of Characteristics,” J. Nucl. Sci. Technol., 43, 1182 (2006). https://doi.org/10.3327/jnst.43.1182
- V. S. Valdimirov, Ph.D. Thesis, V.A. Stecjlova Mathematics Institute, USSR (1959).
- K. Takeuchi, “A Numerical Method for Solving the Neutron Transport Equation in Finite Cylindrical Geometry,” J. Nucl. Sci. Technol., 6, 141 (1969).
- K. Takeuchi, “Numerical Solution of Space-Angle Energy Dependent Neutron Integral Transport Equation,” J. Nucl. Sci. Technol., 8, 141 (1971). https://doi.org/10.3327/jnst.8.141
- M. J. Halsall, CACTUS, A Characteristics Solution to the Neutron Transport Equation in Complicated Geometries, AEEW-R 1291, (1971).
- R. Askew, A Characteristics Formulation of the Neutron Transport Equation in Complicated Geometries, AEEW-M 1108 (1972).
- D. Knott, KRAM:A Lattice Physics Code for Modeling the BWR Fuel Designs, Ph.D. Thesis, Pennsylvania State University, (1990).
- N. Z. Cho, S. G. Hong, "CRX: A Transport Theory Code for Cell and Assembly Calculations based on Characteristics Method," Proc. Int. Conf. on Physics of Reactors, PHYSOR96,Sep. 16-20, Mito, Japan, 1, A-80 (1996).
- H. G.. Joo, J. Y. Cho, K. S. Kim et al. “Methods and Performance of a Three-dimensional Whole-core Transport Code DeCART,” Proc. PHYSOR2004, Paper 95599, April 25-29, Chicago, Illinois, USA. [CD-ROM]
- Z. Weiss, G. Ball, “Ray-Tracing in Complicated Geometries,” Ann. Nucl. Energy, 18, 483 (1991). https://doi.org/10.1016/0306-4549(91)90092-C
- J. T. West, M. B. Emmet, “MARS: A multiple array system Using Combinatorial Geometry,” Oak Ridge National Laboratory, Radiation Shielding Information Center Report, Dec. 1980, (1980).
- T. Jevremovic, J. Vujic, and K. Tsuda, “ANEMONA-A Neutron Transport Code for General Geometry Reactor Assemblies Based on the Method of Characteristics and RFunction Solid Modeler,” Ann. Nucl. Energy, 28, 125 (2001). https://doi.org/10.1016/S0306-4549(00)00038-4
- E. A. Villarino et al., “HELIOS: Angularly Dependent Collision Probabilities,” Nucl. Sci. Eng., 112, 16 (1992). https://doi.org/10.13182/NSE112-16
- N. Sugimura, A. Yamamoto, T. Ushio, M. Mori, M. Tabuchi, T. Endo, “Neutron Transport Models of AEGIS: An Advanced Next-Generation Neutronics Design System,” Nucl. Sci. Eng., 155, 276 (2007). https://doi.org/10.13182/NSE155-276
- A. Leonard, C. T. McDaniel, "Optimal Polar Angles and Weights," Trans. Am. Nucl. Soc., 73, 171 (1995).
- R. Sanchez, L. Mao, S. Santandrea, "Treatment of Boundary Conditions in Trajectory-based Deterministic Transport Methods," Nucl. Sci. Eng., 140, 23 (2002). https://doi.org/10.13182/NSE140-23
- A. Yamamoto, M. Tabuchi, N. Sugimura, T. Ushio, M. Mori, “Derivation of Optimum Polar Angle Quadrature Set for the Method of Characteristics Based on Approximation Error for the Bickley Function,” J. Nucl. Sci. Technol., 44, 129 (2007). https://doi.org/10.3327/jnst.44.129
- A. Yamamoto, Y. Kitamura, T. Ushio, N. Sugimura, “Convergence Improvement of Coarse Mesh Rebalance Method for Neutron Transport Calculations,” J. Nucl. Sci. Technol., 41, 781 (2004). https://doi.org/10.3327/jnst.41.781
- A. Yamamoto, “Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron Transport Calculations,” Nucl. Sci. Eng., 151, 274 (2005). https://doi.org/10.13182/NSE151-274
- K. D. Lathrop, F. W. Brinkley, TWOTRAN-II: An Interfaced, Exportable Version of the TWOTRAN Code for Two-Dimensional Transport, LA-4848-MS, Los Alamos Scientific Laboratory,(1973).
- K. S. Smith, "Nodal Method Storage Reduction by Nonlinear Iteration," Trans. Am. Nucl. Soc., 44, 265 (1983).
- K. S. Smith, J. D. Rhodes, "CASMO-4 Characteristics Method for Two-dimensional PWR and BWR Core Calculations," Trans. Am. Nucl. Soc., 83, 292 (2000).
- N. Z. Cho, C. J. Park, "A Comparison of Coarse Mesh Rebalance and Coarse Mesh Finite Di_erence Accelerations for the Neutron Transport Calculations," Proc. Nuclear Mathematical and Computational Sciences: A Century in Review, A century A new, Gatlinburg, Tennessee, April 6-11, 2003, American Nuclear Society (2003). [CD-ROM]
- H.G. Joo, J. Y. Cho, H. Y. Kim et al., "Dynamic Implementation of the Equivalence Theory in the Heterogeneous Whole Core Transport Calculation," Proc. Int. Conf. on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing (PHYSOR2002), Oct. 7-10, 2002, 13A-02, Seoul, Korea, (2002). [CD-ROM]
- K. S. Smith, J. D. Rhodes III, "Full-core, 2-D, LWR Core Calculation with CASMO-4E," Proc. Int. Conf. on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing (PHYSOR2002), Oct. 7-10, 2002, 13A-04, Seoul, Korea, (2002). [CD-ROM]
- Keisuke OKUMURA, Users manual of MVP-BURN (v2.22), (2004).
- A. Yamamoto, M. Tatsumi, N. Sugimura, “Numerical Solution of Stiff Burnup Equation with Short Half Lived Nuclides by the Krylov Subspace Method,” J. Nucl. Sci. Technol., 44, 147 (2007). https://doi.org/10.3327/jnst.44.147
- A. Yamamoto, M. Tatsumi, N. Sugimura, “Projected Predictor-Corrector Method for Lattice Physics Burnup Calculations,” Nucl. Sci. Eng., 163, 144 (2009). https://doi.org/10.13182/NSE08-80
- C. Moler, C. V. Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later,” SIAM review, 45, 3 (2003). https://doi.org/10.1137/S00361445024180
- M.J. Bell, ORIGEN - The ORNL Isotope Depletion and Generation Code, ORNL-4628 (1973).
- Benchmark on Deterministic Transport Calculations Without Spatial Homogenization, Nuclear Energy Agency, NEA/NSC/DOC(2003) 16, (2003).
- K. Okumura, T. Mori, M. Nakagawa, K. Kaneko, "Validation of a Continuous-Energy Monte Carlo Burn-up Code MVPBURN and Its Application to Analysis of Post Irradiation Experiment," J. Nucl. Sci. Technol., 37, 128 (2000). https://doi.org/10.3327/jnst.37.128
- L.W. Newman (Project Engineer), “Urania-gadolinia: nuclear model development and critical experiment benchmark,” BAW-1810, Babcock & Wilcox, (1984).
Cited by
- Quadratic Depletion Method for Gadolinium Isotopes in CASMO-5 vol.174, pp.1, 2013, https://doi.org/10.13182/NSE12-20
- Discontinuity Factors for Simplified P3 Theory vol.183, pp.1, 2016, https://doi.org/10.13182/NSE15-102
- Estimation of modeling approximation errors using data assimilation with the minimum variance approach vol.54, pp.4, 2017, https://doi.org/10.1080/00223131.2017.1286271
- Underestimation of statistical uncertainty of local tallies in Monte Carlo eigenvalue calculation for simple and LWR lattice geometries pp.1881-1248, 2018, https://doi.org/10.1080/00223131.2018.1513875