DOI QR코드

DOI QR Code

AEGIS: AN ADVANCED LATTICE PHYSICS CODE FOR LIGHT WATER REACTOR ANALYSES

  • Received : 2010.05.31
  • Published : 2010.10.31

Abstract

AEGIS is a lattice physics code incorporating the latest advances in lattice physics computation, innovative calculation models and efficient numerical algorithms and is mainly used for light water reactor analyses. Though the primary objective of the AEGIS code is the preparation of a cross section set for SCOPE2 that is a three-dimensional pin-by-pin core analysis code, the AEGIS code can handle not only a fuel assembly but also multi-assemblies and a whole core geometry in two-dimensional geometry. The present paper summarizes the major calculation models and part of the verification/validation efforts related to the AEGIS code.

Keywords

References

  1. M. Tatsumi, A. Yamamoto, "Advanced PWR Core Calculation based on Multi-group Nodal-transport Method in Three-dimensional Pin-by-pin Geometry," J. Nucl. Sci. Technol., 40, 376 (2003). https://doi.org/10.3327/jnst.40.376
  2. R. E. MacFarlane. RSICC Peripheral Shielding Routine Collection : NJOY99.0, Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data. Oak Ridge National Laboratory. PSR-480 NJOY99.0.
  3. M. B. Chadwick et al., “ENDF/B-VII.0 Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology,” Special Issue on Evaluated Nuclear Data File ENDF/B-VII.0 Nuclear Data Sheets, 107(12), 2931–3059 (December 2006). https://doi.org/10.1016/j.nds.2006.11.001
  4. E. Sartori, Standard Energy Group Structures Of Cross Section Libraries For Reactor Shielding, Reactor Cell and Fusion Neutronics Applications: VITAMIN-J, ECCO-33, ECCO-2000 and XMAS, JEF/DOC-315, Revision 3, NEA Data Bank, Gif-sur-Yvette Cedex, France, December 11, 1990.
  5. T. Ushio, T. Takeda, M. Mori, “Neutron Anisotropic Scattering Effect in Heterogeneous Cell Calculations of Light Water Reactors,” J. Nucl. Sci. Technol., 40, 464 (2003). https://doi.org/10.3327/jnst.40.464
  6. N. Sugimura, A. Yamamoto, “Resonance Treatment Based on Ultra-fine-group Spectrum Calculation in the AEGIS code,” J. Nucl. Sci. Technol., 44, 958 (2007). https://doi.org/10.3327/jnst.44.958
  7. J. F. Briesmeister, Ed., MCNPTM – A General Monte Carlo N-Particle Transport Code, LA-13709-M, March, 2000, (2000).
  8. T. Mori, M. Nakagawa, MVP/GVMP: General Purpose Monte-carlo Codes for Neutron and Photon Transport Calculations based on Continuous Energy and Multigroup Methods,” JAERI-DATA/Code 95-007, (1994).
  9. A. Yamamoto, K. Tada, N. Sugimura, T. Ushio, M. Mori, “Generation of Cross Section Library for Lattice Physics Code, AEGIS,” Proc. Physor2006, Vancouver, Canada, Sep,10-14, 2006, (2006). [CD-ROM]
  10. A. M. Weinberg, E. P. Wigner, “The Physical Theory of Neutron Chain Reactors,” The University of Chicago Press, Chicago (1958).
  11. M. Tabuchi, N. Sugimura, T. Ushio et al., “Verification of the Resonance Calculation model for Rod Cluster Control Based on Ultra-fine-group Spectrum Calculation in the AEGIS code,” Proc. International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, May 3-7, 2009, (2009). [CD-ROM]
  12. R. J. J. Stamm’ler, M. J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design, Academic Press, London, ISBN0-12-663220-7 (1983).
  13. A. Yamamoto, N. Sugimura, T. Ushio, “Calculation Models of AEGIS, an Advanced Neutronics Solver of Next Generation,” Trans. Am. Nucl. Soc., 92, 631 (2005).
  14. N. Sugimura, A. Yamamoto, “Evaluation of Dancoff Factors in Complicated Geometry using the Method of Characteristics,” J. Nucl. Sci. Technol., 43, 1182 (2006). https://doi.org/10.3327/jnst.43.1182
  15. V. S. Valdimirov, Ph.D. Thesis, V.A. Stecjlova Mathematics Institute, USSR (1959).
  16. K. Takeuchi, “A Numerical Method for Solving the Neutron Transport Equation in Finite Cylindrical Geometry,” J. Nucl. Sci. Technol., 6, 141 (1969).
  17. K. Takeuchi, “Numerical Solution of Space-Angle Energy Dependent Neutron Integral Transport Equation,” J. Nucl. Sci. Technol., 8, 141 (1971). https://doi.org/10.3327/jnst.8.141
  18. M. J. Halsall, CACTUS, A Characteristics Solution to the Neutron Transport Equation in Complicated Geometries, AEEW-R 1291, (1971).
  19. R. Askew, A Characteristics Formulation of the Neutron Transport Equation in Complicated Geometries, AEEW-M 1108 (1972).
  20. D. Knott, KRAM:A Lattice Physics Code for Modeling the BWR Fuel Designs, Ph.D. Thesis, Pennsylvania State University, (1990).
  21. N. Z. Cho, S. G. Hong, "CRX: A Transport Theory Code for Cell and Assembly Calculations based on Characteristics Method," Proc. Int. Conf. on Physics of Reactors, PHYSOR96,Sep. 16-20, Mito, Japan, 1, A-80 (1996).
  22. H. G.. Joo, J. Y. Cho, K. S. Kim et al. “Methods and Performance of a Three-dimensional Whole-core Transport Code DeCART,” Proc. PHYSOR2004, Paper 95599, April 25-29, Chicago, Illinois, USA. [CD-ROM]
  23. Z. Weiss, G. Ball, “Ray-Tracing in Complicated Geometries,” Ann. Nucl. Energy, 18, 483 (1991). https://doi.org/10.1016/0306-4549(91)90092-C
  24. J. T. West, M. B. Emmet, “MARS: A multiple array system Using Combinatorial Geometry,” Oak Ridge National Laboratory, Radiation Shielding Information Center Report, Dec. 1980, (1980).
  25. T. Jevremovic, J. Vujic, and K. Tsuda, “ANEMONA-A Neutron Transport Code for General Geometry Reactor Assemblies Based on the Method of Characteristics and RFunction Solid Modeler,” Ann. Nucl. Energy, 28, 125 (2001). https://doi.org/10.1016/S0306-4549(00)00038-4
  26. E. A. Villarino et al., “HELIOS: Angularly Dependent Collision Probabilities,” Nucl. Sci. Eng., 112, 16 (1992). https://doi.org/10.13182/NSE112-16
  27. N. Sugimura, A. Yamamoto, T. Ushio, M. Mori, M. Tabuchi, T. Endo, “Neutron Transport Models of AEGIS: An Advanced Next-Generation Neutronics Design System,” Nucl. Sci. Eng., 155, 276 (2007). https://doi.org/10.13182/NSE155-276
  28. A. Leonard, C. T. McDaniel, "Optimal Polar Angles and Weights," Trans. Am. Nucl. Soc., 73, 171 (1995).
  29. R. Sanchez, L. Mao, S. Santandrea, "Treatment of Boundary Conditions in Trajectory-based Deterministic Transport Methods," Nucl. Sci. Eng., 140, 23 (2002). https://doi.org/10.13182/NSE140-23
  30. A. Yamamoto, M. Tabuchi, N. Sugimura, T. Ushio, M. Mori, “Derivation of Optimum Polar Angle Quadrature Set for the Method of Characteristics Based on Approximation Error for the Bickley Function,” J. Nucl. Sci. Technol., 44, 129 (2007). https://doi.org/10.3327/jnst.44.129
  31. A. Yamamoto, Y. Kitamura, T. Ushio, N. Sugimura, “Convergence Improvement of Coarse Mesh Rebalance Method for Neutron Transport Calculations,” J. Nucl. Sci. Technol., 41, 781 (2004). https://doi.org/10.3327/jnst.41.781
  32. A. Yamamoto, “Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron Transport Calculations,” Nucl. Sci. Eng., 151, 274 (2005). https://doi.org/10.13182/NSE151-274
  33. K. D. Lathrop, F. W. Brinkley, TWOTRAN-II: An Interfaced, Exportable Version of the TWOTRAN Code for Two-Dimensional Transport, LA-4848-MS, Los Alamos Scientific Laboratory,(1973).
  34. K. S. Smith, "Nodal Method Storage Reduction by Nonlinear Iteration," Trans. Am. Nucl. Soc., 44, 265 (1983).
  35. K. S. Smith, J. D. Rhodes, "CASMO-4 Characteristics Method for Two-dimensional PWR and BWR Core Calculations," Trans. Am. Nucl. Soc., 83, 292 (2000).
  36. N. Z. Cho, C. J. Park, "A Comparison of Coarse Mesh Rebalance and Coarse Mesh Finite Di_erence Accelerations for the Neutron Transport Calculations," Proc. Nuclear Mathematical and Computational Sciences: A Century in Review, A century A new, Gatlinburg, Tennessee, April 6-11, 2003, American Nuclear Society (2003). [CD-ROM]
  37. H.G. Joo, J. Y. Cho, H. Y. Kim et al., "Dynamic Implementation of the Equivalence Theory in the Heterogeneous Whole Core Transport Calculation," Proc. Int. Conf. on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing (PHYSOR2002), Oct. 7-10, 2002, 13A-02, Seoul, Korea, (2002). [CD-ROM]
  38. K. S. Smith, J. D. Rhodes III, "Full-core, 2-D, LWR Core Calculation with CASMO-4E," Proc. Int. Conf. on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing (PHYSOR2002), Oct. 7-10, 2002, 13A-04, Seoul, Korea, (2002). [CD-ROM]
  39. Keisuke OKUMURA, Users manual of MVP-BURN (v2.22), (2004).
  40. A. Yamamoto, M. Tatsumi, N. Sugimura, “Numerical Solution of Stiff Burnup Equation with Short Half Lived Nuclides by the Krylov Subspace Method,” J. Nucl. Sci. Technol., 44, 147 (2007). https://doi.org/10.3327/jnst.44.147
  41. A. Yamamoto, M. Tatsumi, N. Sugimura, “Projected Predictor-Corrector Method for Lattice Physics Burnup Calculations,” Nucl. Sci. Eng., 163, 144 (2009). https://doi.org/10.13182/NSE08-80
  42. C. Moler, C. V. Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later,” SIAM review, 45, 3 (2003). https://doi.org/10.1137/S00361445024180
  43. M.J. Bell, ORIGEN - The ORNL Isotope Depletion and Generation Code, ORNL-4628 (1973).
  44. Benchmark on Deterministic Transport Calculations Without Spatial Homogenization, Nuclear Energy Agency, NEA/NSC/DOC(2003) 16, (2003).
  45. K. Okumura, T. Mori, M. Nakagawa, K. Kaneko, "Validation of a Continuous-Energy Monte Carlo Burn-up Code MVPBURN and Its Application to Analysis of Post Irradiation Experiment," J. Nucl. Sci. Technol., 37, 128 (2000). https://doi.org/10.3327/jnst.37.128
  46. L.W. Newman (Project Engineer), “Urania-gadolinia: nuclear model development and critical experiment benchmark,” BAW-1810, Babcock & Wilcox, (1984).

Cited by

  1. Quadratic Depletion Method for Gadolinium Isotopes in CASMO-5 vol.174, pp.1, 2013, https://doi.org/10.13182/NSE12-20
  2. Discontinuity Factors for Simplified P3 Theory vol.183, pp.1, 2016, https://doi.org/10.13182/NSE15-102
  3. Estimation of modeling approximation errors using data assimilation with the minimum variance approach vol.54, pp.4, 2017, https://doi.org/10.1080/00223131.2017.1286271
  4. Underestimation of statistical uncertainty of local tallies in Monte Carlo eigenvalue calculation for simple and LWR lattice geometries pp.1881-1248, 2018, https://doi.org/10.1080/00223131.2018.1513875