DOI QR코드

DOI QR Code

SNR Estimation Based on Correlation of Decision Feedback Signal in OFDM System

OFDM 시스템에서 Decision Feedback 신호의 상관 관계를 이용하는 SNR 추정

  • Kim, Seon-Ae (Department of Electronic Engineering, Chungbuk National University) ;
  • Ryu, Heung-Gyoon (Department of Electronic Engineering, Chungbuk National University) ;
  • Lee, Seung-Jun (Communication R/D Center, LIG Nex1 Co.) ;
  • Ko, Dong-Kuk (Communication R/D Center, LIG Nex1 Co.)
  • Published : 2010.09.30

Abstract

In the channel-varying environment, it is very important to estimate the signal to noise ratio(SNR) of received signal and to transmit the signal effectively for the modern communication system. The performance of existing non-data-aided (NDA) SNR estimation methods are substantially degraded for high level modulation scheme such as M-ary APSK or QAM. In this paper, we propose a SNR estimation method which uses zero point auto-correlation of received signal per block and auto-/cross- correlation of decision feedback signal in OFDM system. Proposed method can be studied into two Types; Type 1 can estimate SNR by zero point auto-correlation of decision feedback signal based on the second moment property. Type 2 uses both zero point auto-correlation and cross-correlation based on the fourth moment property. In block-by-block reception of OFDM system, these two SNR estimation methods can be possible for the practical implementation due to correlation based the estimation method and they show more stable estimation performance than the previous SNR estimation methods. Also, we mathematically derive the SNR estimation expression according to computational difference of auto-/cross-correlation. Finally, Monte Carlo simulations are used to verify the proposed method.

채널의 상태가 변하는 전송 환경에서 수신된 신호에 대한 잡음비를 추정하여, 보다 효율적으로 신호를 전송하는 것은 현대 통신 시스템에서 중요한 기술이다. 기존 NDA(Non-Data-Aided) SNR 추정 방법은 M진 APSK 또는 같은 고차원 신호의 SNR 추정 성능이 떨어진다. 본 논문에서는 OFDM 시스템에서 블록 단위 수신 신호의 영점 자기 상관과 decision feedback 신호의 자기 상관 및 상호 상관을 이용하는 SNR 추정 방법을 제안한다. 본 논문에서 제안한 방법은 decision feedback 신호의 2차 모멘트인 영점 자기 상관을 이용하여 SNR을 추정하는 Type 1 방식과 4차 모멘트 성질을 갖고 있는 영점 자기 상관과 상호 상관을 이용한 Type 2 방식이다. 이 두가지 SNR 추정 방식은 OFDM 시스템에서 블록 단위 수신을 할 때, 신호의 상관 관계에 기반을 두고 있어 SNR 추정 방법의 실용적인 구현이 가능하게 하고, decision feedback 신호를 사용함으로써 QAM 신호에서도 종전의 SNR 추정 방식들보다 비교적 안정적인 추정 성능을 보인다. 또한, decision feedback 신호를 사용할 때 자기 상관과 상호 상관의 오차에 따른 SNR 추정 식을 수식적으로 유도한다. 그리고 Monte Carlo 시뮬레이션을 통해 제안한 SNR 추정 방법의 성능을 확인한다.

Keywords

References

  1. G. Albertazzi, S. Cioni, G. Corazza, M. Neri, R. Pedone, P. Salmi, A. Vanelli-Coralli, and M. Villanti, "On the adaptive DVB-S2 physical layer: Design and performance", IEEE Wireless Commun. Mag., vol. 12, no. 6, pp. 62-68, Dec. 2005. https://doi.org/10.1109/MWC.2005.1561946
  2. David R. Pauluzzi, Norman C. Beaulieu, "Comparison of four SNR estimators for QPSK modulations", IEEE Communication Letters, vol. 4, no. 2, pp. 43-45, Feb. 2000. https://doi.org/10.1109/4234.824751
  3. D. R. Pauluzzi, N. C. Beaulieu, "A comparison of SNR estimation techniques for the AWGN channel", IEEE Trans. on Comm., vol. 48, no. 10, pp. 1680-1691, Oct. 2000. https://doi.org/10.1109/26.871393
  4. R. Matzner, F. Engleberger, "An SNR estimation algorithm using fourth-order moments", Proc. IEEE Int. Symp. Information Theory, Trondheim, Norway, p. 119, Jun. 1994.
  5. N. Kamel, V. Jeoti, "A llinear prediction based estimation of signal-to-noise ratio in AWGN channel", ETRI Journal, vol 29, no. 5, pp. 607-613, Oct. 2007. https://doi.org/10.4218/etrij.07.0107.0012
  6. R. Lopez-Valcarce, C. Mosquera, "Sixth-order statistics-based nondata-aided SNR estimation", IEEE Commun. Lett., vol. 11, no. 4, pp. 351-353, Apr. 2007. https://doi.org/10.1109/LCOM.2007.348298
  7. M. Alvarez-Diaz, R. Lopez-Valcarce, and C. Mosquera, "SNR estimation for multilevel constellations using higher-order moments", IEEE Transactions on Signal Processing, vol. 58, no. 3, part 2, pp. 1515-1526, Mar. 2010. https://doi.org/10.1109/TSP.2009.2036069
  8. W. Gappmair, R. Lopez-Valcarce, and C. Mosquera, "Cramer-Rao lower bound and EM algorithm for envelope-based SNR estimation of nonconstant modulus constellations", IEEE Trans. Commun., vol. 57, no. 6, pp. 1622-1627, Jun. 2009. https://doi.org/10.1109/TCOMM.2009.06.0700932
  9. Feng Rice, Bill Cowley, Bill Moran, and Mark Rice, "Cramer-rao lower bounds for QAM phase and frequency estimation", IEEE Trans. on Comm, vol. 49, no. 9, pp. 1582-1591, Sep. 2001. https://doi.org/10.1109/26.950345
  10. A. Stephenne, F. Bellili, and S. Affes, "Momentbased SNR estimation over linearly-modulated wireless SIMO channels", Wireless Communications, IEEE Transactions on, vol. 9, no. 2, pp. 714-722, Feb. 2010. https://doi.org/10.1109/TWC.2010.02.081719
  11. W. Therrien, Discrete Random Signals and Statistical Signal Processing, Prentice-Hall, 1992.
  12. H. Hayes, Statistical Digital Signal Processing and Modeling John Wiley, 1996.
  13. S. Haykin, Adaptive Filter Theory, Prentice-Hall, N.J., 1986.
  14. H. Van Trees, Detection, Estimation, and Modulation Theory, vol. 1, New York,; Wiley, 1968.
  15. R. van Nee, R. Prasad. OFDM for Wireless Multimedia Communications, Norwood, MA: Artech House, 2000.