DOI QR코드

DOI QR Code

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders

강섬유 보강 초고성능 콘크리트 프리스트레스트 거더의 휨거동 실험 연구

  • Yang, In-Hwan (Dept. of Civil Engineering, Kunsan National University) ;
  • Joh, Chang-Bin (Dept. of Structures & Bridges, Korea Institute of Construction Technology) ;
  • Kim, Byung-Suk (Dept. of Structures & Bridges, Korea Institute of Construction Technology)
  • 양인환 (군산대학교 토목공학과) ;
  • 조창빈 (한국건설기술연구원 구조교량연구실) ;
  • 김병석 (한국건설기술연구원 구조교량연구실)
  • Received : 2010.06.15
  • Accepted : 2010.10.19
  • Published : 2010.12.31

Abstract

This paper examines the flexural behavior of full-scale prestressed concrete girders that were constructed of steel fiber reinforced ultra high performance concrete (UHPC). This study is designed to provide more information about the bending characteristics of UHPC girders in order to establish a reasonable prediction model for flexural resistance and deflection for future structural design codes. Short steel fibers have been introduced into prestressed concrete T-girders in order to study their effects under flexural loads. Round straight high strength steel fibers were used at volume fraction of 2%. The girders were cast using 150~190 MPa steel fiber reinforced UHPC and were designed to assess the ability of steel fiber reinforced UHPC to carry flexural loads in prestressed girders. The experimental results show that steel fiber reinforced UHPC enhances the cracking behavior and ductility of beams. Moreover, when ultimate failure did occur, the failure of girders composed of steel fiber reinforced UHPC was observed to be precipitated by the pullout of steel fibers that were bridging tension cracks in the concrete. Flexural failure of girders occurred when the UHPC at a particular cross section began to lose tensile capacity due to steel fiber pullout. In addition, it was determined that the level of prestressing force influenced the ultimate load capacity.

이 연구에서는 강섬유로 보강된 초고성능 콘크리트(UHPC)를 적용한 대형 크기의 프리스트레스트 콘크리트 거더의 정적하중재하실험을 통하여 휨거동 특성을 파악하고자 하였다. 이 연구결과는 추후 UHPC를 적용한 프리스트레스트 콘크리트 거더의 처짐산정 및 휨강도 산정 모델링에 주요한 기초적인 실험결과를 제공한다. 휨 하중하에서의 프리스트레스트 콘크리트 T-거더의 거동을 파악하기 위하여 강섬유를 혼입하였다. 강섬유는 원형단면의 직선형상이며, 콘크리트에서 2%의 부피비를 나타낸다. 거더는 압축강도 150~190 MPa의 UHPC를 이용하여 제작하였으며, 프리스트레스트 거더의 휨내력을 파악하고자 하였다. 실험결과는 강섬유 보강 UHPC가 거더의 균열제어 및 연성거동에 효과적임을 나타낸다. 강섬유 보강 UHPC를 적용한 프리스트레스트 거더의 파괴는 인장균열에서의 가교 역할(bridging effect)을 하는 강섬유의 뽐힘(pullout)과 더불어 발생한다. 강섬유의 뽑힘과 더불어 단면의 인장강도 손실이 발생하며, 이는 거더의 휨파괴를 유발한다. 또한, 도입 프리스트레스량이 거더의 휨강도에 영향을 미치는 것으로 나타난다.

Keywords

References

  1. 김우석, 곽윤근, 김주범, “강섬유 보강 콘크리트 보의 휨 내력 예측식의 제안,” 콘크리트학회 논문집, 18권, 3호, 2006, pp. 361-370. https://doi.org/10.4334/JKCI.2006.18.3.361
  2. 오영훈, 김정해, “전단보강이 없는 강섬유보강 콘크리트 휨부재의 휨 및 전단강도의 평가,” 콘크리트학회 논문집, 20권, 2호, 2008, pp. 257-267. https://doi.org/10.4334/JKCI.2008.20.2.257
  3. 초고성능 시멘트 복합체를 이용한 교량 거더 개발, 한국건설기술연구원, 2005.
  4. Yang, I. H., Joh, C., and Kim, B. S., “Structural Behavior of Ultra High Performance Concrete Beams Subjected to Bending,” Engineering Structures, Vol. 32, No. 11, 2010, pp. 3478-3487. https://doi.org/10.1016/j.engstruct.2010.07.017
  5. Chunxiang, Q. and Patnaikuni, I., “Properties of High-Strength Steel Fiber-Reinforced Concrete Beams in Bending,” Cement & Concrete Composites, Vol. 21, No. 21, 1999, pp. 73-81. https://doi.org/10.1016/S0958-9465(98)00040-7
  6. Naaman, A. E. and Reinhardt, H. W., “Proposed Classification of HPFRC Composites Based on Their Tensile Response,” Materials and Structures, Vol. 39, 2006, pp. 547-555. https://doi.org/10.1617/s11527-006-9103-2
  7. Shin, S. W., Ghosh, S. K., and Moreno, J., “Flexural Ductility of Ultra High Strength Concrete Members,” ACI Structural Journal, Vol. 86, No. 4, 1989, pp. 394-400.
  8. Yuguang, Y., Walraven, J., and Uiji, J. D., “Study on Bending Behavior of an UHPC Overlay on a Steel Orthotropic Deck,” Proceedings of 2nd International Symposium on Ultra High Performance Concrete, Kassel, Germany, 2008, pp. 639-646.
  9. Si-Larbi, A., Ferrier, E., and Hamelin, P., “Flexural Behavior of Ultra High Performance Concrete Reinforced with Short Fibers and CFRP Rebars,” Proceedings of 2nd International Symposium on Ultra High Performance Concrete, Kassel, 2008, pp. 661-672.
  10. Alsayed, S. H., “Flexural Deflection of Reinforced Fibrous Concrete Beams,” ACI Structural Journal, Vol. 90, No. 1, 1993, pp. 72-76.
  11. Ashour S. A. and Wafa, F. F., “Flexural Behavior of High-Strength Fiber Reinforced Concrete Beams,” ACI Structural Journal, Vol. 90, No. 3, 1993, pp. 279-287.
  12. Oh, B. H., “Flexural Analysis of Reinforced Concrete Beams Containing Steel Fibers,” Journal of Structural Engineering, ASCE, Vol. 118, No. 10, 1992, pp. 2812-2863.
  13. Kooiman, A. G., “Modelling the Post-Cracking Behavior of Steel Fibre Reinforced Concrete for Structural Design Purposes,” HERON, Vol. 45, No. 4, 2000, pp. 275-307.
  14. Casanova, P. and Rossi, P., “Analysis of Metallic Fibre-Reinforced Concrete Beams Submitted to Bending,” Materials and Structures, Vol. 29, No. 190, 1999, pp. 354-361.
  15. 양인환, 조창빈, 강수태, 김병석, “강섬유로 보강된 초고성능 콘크리트의 휨 거동에 관한 실험 연구,” 콘크리트학회 논문집, 21권, 6호, 2009, pp. 737-744. https://doi.org/10.4334/JKCI.2009.21.6.737
  16. 강수태, 김윤용, 이방연, 김진근, “섬유의 방향성이 강섬유 보강 초고강도 콘크리트의 휨거동 특성에 미치는 영향,” 콘크리트학회 논문집, 20권, 6호, 2008, pp. 731-739. https://doi.org/10.4334/JKCI.2008.20.6.731
  17. 한상묵, 궈이홍, “탄소성 파괴역학 모델에 근거한 초고강도 섬유보강 콘크리트 I형 보의 비선형 유한요소해석,” 한국전산구조공학회 논문집, 22권, 3호, 2009, pp. 199-209.
  18. Cho, J., Lundy, J., and Chao, S., “Shear Strength of Steel Fiber Reinforced Prestressed Concrete Beams,” Proceedings of Structures and Congress : Don't Mess with Structural Engineers, 2009, pp. 1058-1066.
  19. Material Property Characterization of Ultra-High Performance Concrete, US Department Transportation, Federal Highway Administration, 2006, pp. 23-50.
  20. RILEM TC 162-TDF, “Test and Design Methods for Steel Fibre Reinforced Concrete, Bending Test, Final Recommendation,” Materials and Structures, Vol. 35, No. 253, 2002, pp. 579-582. https://doi.org/10.1617/13884
  21. 국토해양부, 콘크리트구조설계기준, 한국콘크리트학회, 2007, pp. 116-128.
  22. Association Francaise du Genil Civil (AFGC), Betons Fibres a Ultra-Hautes Performances. Association Francaise du Genil Civil, SETRA, France, 2002, pp. 45-51.
  23. American Concrete Institute, Design Considerations for Steel Fiber Reinforced Concrete, ACI 544.4R-88, ACI Manual of Concrete Practice, Detroit, 2005, pp. 544.4R-1-544.4R-18.

Cited by

  1. Tensile Stress-Crack Opening Relationship of Ultra High Performance Cementitious Composites(UHPCC) Used for Bridge Decks vol.17, pp.1, 2013, https://doi.org/10.11112/jksmi.2013.17.1.046
  2. Characteristics of Structural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Beams Subjected to Torsion vol.26, pp.1, 2014, https://doi.org/10.4334/JKCI.2014.26.1.087
  3. Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams vol.27, pp.3, 2015, https://doi.org/10.4334/JKCI.2015.27.3.283
  4. An Experimental Study on the Joints in Ultra High Performance Precast Concrete Segmental Bridges vol.23, pp.2, 2011, https://doi.org/10.4334/JKCI.2011.23.2.235
  5. Structural Behavior of Hybrid Steel Fiber-Reinforced Ultra High Performance Concrete Beams Subjected to Bending vol.26, pp.6, 2014, https://doi.org/10.4334/JKCI.2014.26.6.771