References
- Possani, L. D., Merino, E., Corona, M., Bolivar, F. and Becerril, B. (2000) Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 82, 861-868. https://doi.org/10.1016/S0300-9084(00)01167-6
- Goudet, C., Chi, C. W. and Tytgat, J. (2002) An overview of toxins scorpion and genes from the venom of the Asian Buthus martensi Karsch. Toxicon 40, 1239-1258. https://doi.org/10.1016/S0041-0101(02)00142-3
-
Lipkind, G. M. and Fozzard, H. A. (1997) A model of scorpion toxin binding to voltage-gated
$K^+$ channels. J. Membr. Biol. 158, 187-196. https://doi.org/10.1007/s002329900256 -
Naranjo, D. and Miller, C. (1996) A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker
$K^+$ channel. Neuron 16, 123-130. https://doi.org/10.1016/S0896-6273(00)80029-X - Menez, A. (1998) Functional architectures of animal toxins: a clue to drug design? Toxicon 36, 1557-1572. https://doi.org/10.1016/S0041-0101(98)00148-2
-
He, X. L., Li, H. M., Zeng, Z. H., Liu, X. Q., Wang, M and Wang, D. C. (1999) Crystal structures of two
$\alpha$ -like scorpion toxins: nonproline cis peptide bonds and implications for new binding site selectivity on the sodium channel. J. Mol. Biol. 292, 125-135. https://doi.org/10.1006/jmbi.1999.3036 - Kharrat, R., Darbon, H., Rochat, H. and Granier C. (1989) Structure/activity relationships of scorpion alpha-toxins. Multiple residues contribute to the interaction with receptors. Eur. J. Biochem. 181, 381-390. https://doi.org/10.1111/j.1432-1033.1989.tb14735.x
- Karbat, I., Frolow, F., Froy, O., Gilles, N., Cohen, L., Turkov, M., Gordon, D. and Gurevit, M. (2004) Molecular basis of the high insecticidal potency of scorpion alpha-toxins. J. Biol. Chem. 279, 31679-31686. https://doi.org/10.1074/jbc.M402048200
- Zilberberg, N., Gordon, D., Pelhate, M., Adams, M. E., Norris, T. M., Zlotkin, E. and Gurevitz. M. (1996) Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35, 10215-10222. https://doi.org/10.1021/bi9528309
- Zilberberg, N., Froy, O., Loret, E., Cestele, S., Arad, D., Gordon, D. and Gurevitz, M. (1997) Identification of structural elements of a scorpion alpha-neurotoxin important for receptor site recognition. J. Biol. Chem. 272, 14810-14816. https://doi.org/10.1074/jbc.272.23.14810
- Sun, Y. M., Liu, W., Zhu, R. H., Goudet, C., Tytgat, J. and Wang, D. C. (2002) Roles of disulfide bridges in scorpion toxin BmK M1 analyzed by mutagenesis. J. Pept. Res. 60, 247-256. https://doi.org/10.1034/j.1399-3011.2002.21021.x
- Sun, Y. M., Bosmans, F., Zhu, R. H., Goudet, C., Xiong, Y. M., Tytgat, J. and Wang, D. C. (2003) Importance of the conserved aromatic residues in the scorpion alpha-like toxin BmK M1: the hydrophobic surface region revisited. J. Biol. Chem. 278, 24125-24131. https://doi.org/10.1074/jbc.M211931200
- Wang, C. G., Gilles, N., Hamon, A., Le Gall, F., Stankiewicz, M., Pelhate, M., Xiong, Y. M., Wang, D. C. and Chi, C. W. (2003) Exploration of the functional site of a scorpion alpha-like toxin by site-directed mutagenesis. Biochemistry 42, 4699-4708. https://doi.org/10.1021/bi0270438
- Cui, Y., Guo, G. L., Ma, L., Hu, N., Song, Y. B., Liu, Y. F, Wu, C. F. and Zhang, J. H. (2010) Structure and function relationship of toxin from Chinese scorpion Buthus martensii Karsch (BmK AGAP): gaining insight into related sites of analgesic activity. Peptides 31, 995-1000. https://doi.org/10.1016/j.peptides.2010.03.017
- Ma, R., Cui, Y., Zhou, Y., Bao, Y. M., Yang, W. Y., Liu, Y. F, Wu, C. F. and Zhang, J. H. (2010) Location of the analgesic domain in scorpion toxin BmK AGAP by mutagenesis of disulfide bridges. Biochem. Biophys. Res. Commun. 394, 330-334. https://doi.org/10.1016/j.bbrc.2010.02.179
-
Zhu, J., Tong, X. T., Cao, C. Y., Wu, G., Zhang, N. X. and Wu, H. M. (2010) Solution structure of BmK
${\alpha}Tx11$ , a tox in from the venom of the Chinese scorpion Buthus martensii Karsch. Biochem. Biophys. Res. Commun. 391, 627-633. https://doi.org/10.1016/j.bbrc.2009.11.110 - Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723. https://doi.org/10.1002/elps.1150181505
- Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283-291. https://doi.org/10.1107/S0021889892009944
- Fiordalisi, J. J., Fetter, C. H., TenHarmsel, A., Gigowski, R., Chiappinelli, V. A. and Grant, G. A. (1991) Synthesis and expression in Escherichia coli of a gene for kappa-bungarotoxin. Biochemistry 30, 10337-10343. https://doi.org/10.1021/bi00106a035
- Bessette, P. H., Aslund, F., Beckwith, J. and Georgiou, G. (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 96, 13703-13708. https://doi.org/10.1073/pnas.96.24.13703
- Liu, Z., Yang, G. Z., Li, B. L., Chi, C. W. and Wu, X. F. (2003) Cloning, Co-Expression with an Amidating Enzyme, and Activity of the Scorpion Toxin BmK ITa1 cDNA in Insect Cells. Mol. Biotechnol. 24, 21-26. https://doi.org/10.1385/MB:24:1:21
- Gurevitz, M., Gordon, D., Ben-Natan, S., Turkov, M. and Froy, O. (2001) Diversification of neurotoxins by C-tail ‘wiggling’: a scorpion recipe for survival. FASEB J. 15, 1201-1205. https://doi.org/10.1096/fj.00-0571hyp
- Blanc, E., Sabatier, J. M., Kharrat, R., Meunier, S., el Ayeb, M., Van Rietschoten, J. and Darbon, H. (1997) Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated potassium channels. Proteins 29, 321-333. https://doi.org/10.1002/(SICI)1097-0134(199711)29:3<321::AID-PROT6>3.0.CO;2-D
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Fennessy, M. R. and Lee, J. R. (1975) Methods in Narcotics Research. pp 76-79, Marcel Dekker, N.Y, USA.
Cited by
- The role of glycine residues at the C-terminal peptide segment in antinociceptive activity: a molecular dynamics simulation vol.19, pp.3, 2013, https://doi.org/10.1007/s00894-012-1666-y
- Site-Directed Mutagenesis of BmK AGP-SYPU1: The Role of Two Conserved Tyr (Tyr5 and Tyr42) in Analgesic Activity vol.33, pp.2, 2014, https://doi.org/10.1007/s10930-014-9547-0
- The role of Ser54 in the antinociceptive activity of BmK9, a neurotoxin from the scorpion Buthus martensii Karsch vol.58, pp.6-7, 2011, https://doi.org/10.1016/j.toxicon.2011.08.014
- Biochemical characterization of ferredoxin-NADP+ reductase interaction with flavodoxin in Pseudomonas putida vol.45, pp.8, 2012, https://doi.org/10.5483/BMBRep.2012.45.8.071