DOI QR코드

DOI QR Code

자장 구조 변화에 따른 High Power Impulse Magnetron Sputtering (HIPIMS)에서 Al-doped ZnO 박막 증착 특성

Magnetic Field Dependent Characteristics of Al-doped ZnO by High Power Impulse Magnetron Sputtering (HIPIMS)

  • 박동희 (한국과학기술연구원 광.전자재료센터) ;
  • 양정도 (한국과학기술연구원 광.전자재료센터) ;
  • 최지원 (한국과학기술연구원 전자재료센터) ;
  • 손영진 (삼원진공) ;
  • 최원국 (한국과학기술연구원 광.전자재료센터)
  • Park, Dong-Hee (Optoelectronic Materials Center, Korea Institute of Science and Technology) ;
  • Yang, Jeong-Do (Optoelectronic Materials Center, Korea Institute of Science and Technology) ;
  • Choi, Ji-Won (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Son, Young-Jin (Samwon Vacuum Co. Ltd.) ;
  • Choi, Won-Kook (Optoelectronic Materials Center, Korea Institute of Science and Technology)
  • 투고 : 2010.09.17
  • 심사 : 2010.11.05
  • 발행 : 2010.12.27

초록

Abstract In this study characteristics of Al-doped ZnO thin film by HIPIMS (High power impulse sputtering) are discussed. Deposition speed of HIPIMS with conventional balanced magnetic field is measured at about 3 nm/min, which is 30% of that of conventional RF sputtering process with the same working pressure. To generate additional magnetic flux and increase sputtering speed, electromagnetic coil is mounted at the back side of target. Under unbalanced magnetic flux from electromagnet with 1.5A coil current, deposition speed of AZO thin film is increased from 3 nm/min to 4.4 nm/min. This new value originates from the decline of particles near target surface due to the local magnetic flux going toward substrate from electromagnet. AZO film sputtered by HIPIMS process shows very smooth and dense film surface for which surface roughness is measured from 0.4 nm to 1 nm. There are no voids or defects in morphology of AZO films with varying of magnetic field. When coil current is increased from 0A to 1A, transmittance of AZO thin film decreases from 80% to 77%. Specific resistance is measured at about $2.9{\times}10-2\Omega{\cdot}cm$. AZO film shows C-axis oriented structure and its grain size is calculated at about 5.3 nm, which is lower than grain size in conventional sputtering.

키워드

참고문헌

  1. S. M. Park, T. Ikegami and K. Ebihara, Jpn. J. Appl. Phys., 44(1), 8027 (2005). https://doi.org/10.1143/JJAP.44.8027
  2. J. Lim and C. Lee, Kor. J. Mater. Res., 15(11), 741 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.11.741
  3. H. Wang, J. Xu, M. Ren and L. Yang, J. Mater. Sci. Mater. Electron., 19, 1135 (2008). https://doi.org/10.1007/s10854-007-9489-9
  4. H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh and Y. S. Kim, J. Cryst. Growth, 277, 352 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.061
  5. B. -K. Shin, T. -I. Lee, K. -I. Park, K. -J. Ahn and J. -M. Myoung, Kor. J. Mater. Res., 20(1), 47 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.1.047
  6. S. H. Jeong, S. Kho, D. Jung, S. B. Lee and J. -H. Boo, Surf. Coating. Tech., 174-175, 187 (2003). https://doi.org/10.1016/S0257-8972(03)00600-5
  7. S. J. Tark, M. G. Kang and D. Kim, Kor. J. Mater. Res., 16(7), 449 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.7.449
  8. A. P. Ehiasariana, C. Reinhar, P. Eh. Hovespian, J. G. Wen and I. Petrov, in Proceedings of the 50th Annual Technical Conference (Louisville, KY, April 2007), ed. V. H. Mattox (Society of Vacuum Coaters, Albuquerque, USA, 2007), p.163.
  9. A. P. Ehiasariana, W. D. Munz, L. Hultman, U. Helmersson and I. Petrovc, Surf. Coating. Tech., 163-164, 267 (2003). https://doi.org/10.1016/S0257-8972(02)00479-6
  10. U. Helmersson, M. Lattemann, J. Alami, J. Bohlmark, A. P. Ehiasarian and J. T. Gudmundsson, in Proceedings of the 48th Annual Technical Conference (Denver, CO, April 2005), ed. V. H. Mattox (Society of Vacuum Coaters, Albuquerque, USA, 2005), p.458.
  11. U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian and J. T. Gudmundsson, Thin Solid Films, 513, 1 (2006). https://doi.org/10.1016/j.tsf.2006.03.033
  12. V. Sittinger, F. Ruske, W. Werner, C. Jacobs, B. Szyszka and D. J. Christie, Thin Solid Films, 516, 5847 (2008). https://doi.org/10.1016/j.tsf.2007.10.031
  13. S. Konstantinidis, A. Hemberg, A. Tromont, J. P. Dauchot and M. Hecq, in Proceedings of the 50th Annual Technical Conference of the Society of Vacuum Coaters (Louisville, KY, April 2007). ed. V. H. Mattox (Society of vacuum coaters, Albuquerque, USA, 2007), p.92.
  14. J. Bohlmark, J. T. Gudmundsson, J. Alami, M. Latteman and U. Helmersson, IEEE Trans. Plasma Sci., 33(2), 346 (2005). https://doi.org/10.1109/TPS.2005.845022
  15. K. Yuasa, S. Matayoshi and T. Sakurai, Jpn. J. Appl. Phys., 37, 6615 (1998). https://doi.org/10.1143/JJAP.37.6615
  16. R. Groenen, H. Linden and R. Sanden, Plasma Process. Polymer., 2, 618 (2005). https://doi.org/10.1002/ppap.200500039
  17. K . Dittmann, D. Drozdov, B. Krames and J. Meichsner, J. Phys. Appl. Phys., 40, 6593 (2007). https://doi.org/10.1088/0022-3727/40/21/019
  18. A. L. Patterson, Phys. Rev., 56(10), 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  19. H. Ko, C. -S. Lee, W. -P. Tai, S. -J. Suh and Y. -S. Kim, J. Kor. Ceram. Soc., 41(6), 476 (2004) (in Korean). https://doi.org/10.4191/KCERS.2004.41.6.476
  20. S. Cho, J. Kor. Vacuum Soc., 18(5), 377 (2009). https://doi.org/10.5757/JKVS.2009.18.5.377
  21. P. F. Carcia, R. S. McLean, M. H. Reilly, Z. G. Li, L. J. Pillione and R. F. Messier, Appl. Phys. Lett., 81(10), 1800 (2002). https://doi.org/10.1063/1.1504874