DOI QR코드

DOI QR Code

KOREA INSTITUTE FOR ADVANCED STUDY VALUE-ADDED GALAXY CATALOG

  • Choi, Yun-Young (Dept. of Astronomy & Space Science, Kyung Hee University) ;
  • Han, Du-Hwan (Dept. of Astronomy and Atmospheric sciences, Kyungpook National University) ;
  • Kim, Sung-Soo S. (Dept. of Astronomy & Space Science, Kyung Hee University)
  • 투고 : 2010.08.31
  • 심사 : 2010.09.18
  • 발행 : 2010.12.31

초록

We present the Korea Institute for Advanced Study Value-Added Galaxy Catalog (KIAS VAGC), a catalog of galaxies based on the Large Scale Structure (LSS) sample of New York University Value-Added Galaxy Catalog (NYU VAGC) Data Release 7. Our catalog supplements redshifts of 10,497 galaxies with 10 < $r_P\;{\leq}\;17.6$ (1455 with 10 < $r_P\;{\leq}\;14.5$) to the NYU VAGC LSS sample. Redshifts from various existing catalogs such as the Updated Zwicky Catalog, the IRAS Point Source Catalog Redshift Survey, the Third Reference Catalogue of Bright Galaxies, and the Two Degree Field Galaxy Redshift Survey have been put into the NYU VAGC photometric catalog. Our supplementation significantly improves spectroscopic completeness: the area covered by the spectroscopic sample with completeness higher than 95% increases from 2.119 to 1.737 sr. Our catalog also provides morphological types of all galaxies that are determined by the automated morphology classification scheme of Park & Choi (2005), and related parameters, together with fundamental photometry parameters supplied by the NYU VAGC. Our catalog contains matches to objects in the Max Planck for Astronomy (MPA) & Johns Hopkins University (JHU) spectrum measurements (Data Release 7). This new catalog, the KIAS VAGC, is complementary to the NYU VAGC and MPA-JHU catalog.

키워드

참고문헌

  1. Abazajian, K. N., et al. 2009, The Seventh Data Release of the Sloan Digital Sky Survey, ApJS, 182,543 https://doi.org/10.1088/0067-0049/182/2/543
  2. Baldry, I. K., Glazebrook, K., Brinkmann, J., Ivezic,Z., & Lupton, R. H. 2004, Quantifying the BimodalColor-Magnitude Distribution of Galaxies, ApJ, 600,681 https://doi.org/10.1086/380092
  3. Bell, E. F., et al. 2004, Nearly 5000 Distant Early-TypeGalaxies in COMBO-17: A Red Sequence and ItsEvolution since z 1, ApJ, 608, 752 https://doi.org/10.1086/420778
  4. Blanton, M. R., Lin, H., Lupton, R. H., Maley, F.M., Young, N., Zehavi, I., & Loveday, J. 2003, AnEfficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey"Tiling" Algorithm, AJ, 125, 2276 https://doi.org/10.1086/344761
  5. Blanton, M. R., et al. 2005, New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based onNew Public Surveys, AJ, 129, 2562 https://doi.org/10.1086/429803
  6. Choi, Y.-Y., Park, C., & Vogeley, M. S. 2007, Internaland Collective Properties of Galaxies in the SloanDigital Sky Survey, ApJ, 658, 884 https://doi.org/10.1086/511060
  7. Choi, Y.-Y., et al. 2010, Galaxy Clustering Topologyin the Sloan Digital Sky Survey Main Galaxy Sample: a Test for Galaxy Formation Models, ApJS, inpublication
  8. Choi, Y.-Y., Woo, J.-H., & Park, C. 2009, Environmental Dependence of Active Galactic Nucleus Activity.I. The Effects of Host Galaxy, ApJ, 699, 1679 https://doi.org/10.1088/0004-637X/699/2/1679
  9. de Vaucouleurs, G., et al. 1991, Third Reference Catalogue of Bright Galxies, Volume 1-3, XII (Springer-Verlag)
  10. Falco, E. E., et al. 1999, The Updated Zwicky Catalog(UZC), PASP, 111, 438 https://doi.org/10.1086/316343
  11. Fukugita, Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P., 1996, The SloanDigital Sky Survey Photometric System, AJ, 111,1748 https://doi.org/10.1086/117915
  12. Geller, M. J., & Huchra, J. P. 1989, Mapping the Universe, Science, 246, 897 https://doi.org/10.1126/science.246.4932.897
  13. Gott, J. R., et al. 2005, A Map of the Universe, ApJ,624, 463 https://doi.org/10.1086/428890
  14. Han, D.-H., Park, C., Choi, Y.-Y., & Park, M.-G. 2010,The Properties of Type $I_{\alpha}$ Supernova Host Galaxiesfrom the Sloan Digital Sky Survey, ApJsubmitted
  15. Jester, S., et al. 2005, The Sloan Digital Sky SurveyView of the Palomar-Green Bright Quasar SurveyAJ, 130, 873 https://doi.org/10.1086/432466
  16. Lee, J. H., Lee, M. G., Park, C., & Choi, Y.-Y. 2010,The Nature of the Sloan Digital Sky Survey Galaxiesin Various Classes Based on Morphology, Colour andSpectral Features - II. Multi-Wavelength Properties,MNRAS, 401, 1804 https://doi.org/10.1111/j.1365-2966.2009.15751.x
  17. Lee, J. H., Lee, M. G., Park, C., & Choi, Y.-Y. 2008,The Nature of the Sloan Digital Sky Survey Galaxiesin Various Classes Based on Morphology, Colour andSpectral Features - I. Optical properties, MNRAS,389, 1791 https://doi.org/10.1111/j.1365-2966.2008.13660.x
  18. Lee, G.-H., Park, C., Lee, M. G., & Choi, Y.-Y. 2010,Dependence of Barredness of Late-type Galaxies onGalaxy Properties and Environment, ApJsubmitted
  19. Park, C., & Choi, Y.-Y. 2005, Morphology Segregation of Galaxies in Color-Color Gradient Space, ApJ,635, 29 https://doi.org/10.1086/499243
  20. Park, C., & Choi, Y.-Y. 2009, Combined Effects ofGalaxy Interactions and Large-Scale Environmenton Galaxy Properties, ApJ, 691, 1828 https://doi.org/10.1088/0004-637X/691/2/1828
  21. Park, C., Gott, J. R., & Choi, Y.-Y. 2008, Transformation of Morphology and Luminosity Classes of theSDSS Galaxies, ApJ, 674, 784 https://doi.org/10.1086/524192
  22. Park, C., et al. 2007, Environmental Dependence ofProperties of Galaxies in the Sloan Digital Sky Survey, ApJ, 658, 898 https://doi.org/10.1086/511059
  23. Park, C., & Hwang, H. S. 2009, Interactions of Galaxiesin the Galaxy Cluster Environment, ApJ, 699, 1595 https://doi.org/10.1088/0004-637X/699/2/1595
  24. Saunders, W., et al. 2000, The PSCz Catalogue, MNRAS, 317, 55 https://doi.org/10.1046/j.1365-8711.2000.03528.x
  25. Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998,Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds, ApJ, 500, 525 https://doi.org/10.1086/305772
  26. Stoughton, C., et al. 2002, Sloan Digital Sky Survey:Early Data Release, AJ, 123, 485 https://doi.org/10.1086/324741
  27. Strauss, M. A., et al. 2002, Spectroscopic Target Selection in the Sloan Digital Sky Survey: The MainGalaxy Sample, AJ, 124, 1810 https://doi.org/10.1086/342343
  28. York, D., et al. 2000, The Sloan Digital Sky Survey:Technical Summary, AJ, 120, 1579 https://doi.org/10.1086/301513
  29. Zhang, Y., Springel, V., & Yang, X. 2010, GenusStatistics Using the Delaunay Tessellation FieldEstimation Method: (I) Tests with the Millennium Simulation and the SDSS DR7, ApJsubmitted,(arXiv:1006.3768)

피인용 문헌

  1. Activity in galactic nuclei of cluster and field galaxies in the local universe vol.538, 2012, https://doi.org/10.1051/0004-6361/201117351
  2. Large-scale Environmental Dependence of the Abundance Ratio of Nitrogen to Oxygen in Blue, Star-forming Galaxies Fainter than L * vol.837, pp.1, 2017, https://doi.org/10.3847/1538-4357/aa5e53
  3. Photometric properties of void galaxies in the Sloan Digital Sky Survey Data Release 7 vol.426, pp.4, 2012, https://doi.org/10.1111/j.1365-2966.2012.21943.x
  4. CATALOGS OF COMPACT GROUPS OF GALAXIES FROM THE ENHANCED SDSS DR12 vol.225, pp.2, 2016, https://doi.org/10.3847/0067-0049/225/2/23
  5. STELLAR POPULATIONS OF EARLY-TYPE GALAXIES WITH MID-INFRARED EXCESS EMISSION vol.820, pp.2, 2016, https://doi.org/10.3847/0004-637X/820/2/132
  6. Cosmic voids in Sloan Digital Sky Survey Data Release 7 vol.421, pp.2, 2012, https://doi.org/10.1111/j.1365-2966.2011.20197.x
  7. Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation vol.566, 2014, https://doi.org/10.1051/0004-6361/201423585
  8. DARK MATTER HALOS OF BARRED DISK GALAXIES vol.807, pp.1, 2015, https://doi.org/10.1088/0004-637X/807/1/111
  9. DO BARS TRIGGER ACTIVITY IN GALACTIC NUCLEI? vol.750, pp.2, 2012, https://doi.org/10.1088/0004-637X/750/2/141
  10. DUST-OBSCURED GALAXIES IN THE LOCAL UNIVERSE vol.769, pp.2, 2013, https://doi.org/10.1088/0004-637X/769/2/116
  11. SPECTRAL PROPERTIES OF GALAXIES IN VOID REGIONS vol.810, pp.2, 2015, https://doi.org/10.1088/0004-637X/810/2/165
  12. THE GALACTIC SPIN OF AGN GALAXIES vol.735, pp.1, 2011, https://doi.org/10.1088/2041-8205/735/1/L25
  13. THE OPTICAL LUMINOSITY FUNCTION OF VOID GALAXIES IN THE SDSS AND ALFALFA SURVEYS vol.810, pp.2, 2015, https://doi.org/10.1088/0004-637X/810/2/108
  14. The cosmological principle is not in the sky vol.469, pp.2, 2017, https://doi.org/10.1093/mnras/stx988
  15. MASSIVE GALAXIES ARE LARGER IN DENSE ENVIRONMENTS: ENVIRONMENTAL DEPENDENCE OF MASS–SIZE RELATION OF EARLY-TYPE GALAXIES vol.834, pp.1, 2017, https://doi.org/10.3847/1538-4357/834/1/73
  16. THE ENVIRONMENT OF BARRED GALAXIES IN THE LOW-REDSHIFT UNIVERSE vol.796, pp.2, 2014, https://doi.org/10.1088/0004-637X/796/2/98
  17. A CATALOG OF VISUALLY CLASSIFIED GALAXIES IN THE LOCAL (z∼ 0.01) UNIVERSE vol.217, pp.2, 2015, https://doi.org/10.1088/0067-0049/217/2/27
  18. DEPENDENCE OF BARRED GALAXY FRACTION ON GALAXY PROPERTIES AND ENVIRONMENT vol.745, pp.2, 2012, https://doi.org/10.1088/0004-637X/745/2/125
  19. Quantifying galactic morphological transformations in the cluster environment vol.414, pp.1, 2011, https://doi.org/10.1111/j.1365-2966.2011.18415.x
  20. THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY vol.759, pp.1, 2012, https://doi.org/10.1088/2041-8205/759/1/L7
  21. ON THE GALACTIC SPIN OF BARRED DISK GALAXIES vol.775, pp.1, 2013, https://doi.org/10.1088/0004-637X/775/1/19
  22. THE MOST BOUND HALO PARTICLE–GALAXY CORRESPONDENCE MODEL: COMPARISON BETWEEN MODELS WITH DIFFERENT MERGER TIMESCALES vol.823, pp.2, 2016, https://doi.org/10.3847/0004-637X/823/2/103
  23. TRACING RECENT STAR FORMATION OF RED EARLY-TYPE GALAXIES OUT TOz∼ 1 vol.791, pp.2, 2014, https://doi.org/10.1088/0004-637X/791/2/134
  24. GOODS-Herschel: the impact of galaxy-galaxy interactions on the far-infrared properties of galaxies vol.535, 2011, https://doi.org/10.1051/0004-6361/201117476
  25. TOPOLOGY OF LUMINOUS RED GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY vol.209, pp.2, 2013, https://doi.org/10.1088/0067-0049/209/2/19
  26. A CENSUS OF GAS OUTFLOWS IN TYPE 2 ACTIVE GALACTIC NUCLEI vol.795, pp.1, 2014, https://doi.org/10.1088/0004-637X/795/1/30
  27. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES vol.831, pp.2, 2016, https://doi.org/10.3847/0004-637X/831/2/118
  28. The spin of late-type galaxies at redshiftsz≤ 1.2 vol.426, pp.2, 2012, https://doi.org/10.1111/j.1365-2966.2012.21812.x
  29. ANOMALOUS ANISOTROPIC CROSS-CORRELATIONS BETWEENWMAPCMB MAPS AND SDSS GALAXY DISTRIBUTION AND IMPLICATIONS ON THE DARK FLOW SCENARIO vol.758, pp.2, 2012, https://doi.org/10.1088/0004-637X/758/2/130
  30. The Fastest Galaxy Evolution in an Unbiased Compact Group Sample withWISE vol.835, pp.2, 2017, https://doi.org/10.3847/1538-4357/835/2/280
  31. CONSTRAINING THE STAR FORMATION HISTORIES IN DARK MATTER HALOS. I. CENTRAL GALAXIES vol.770, pp.2, 2013, https://doi.org/10.1088/0004-637X/770/2/115
  32. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES vol.835, pp.1, 2017, https://doi.org/10.3847/1538-4357/835/1/80
  33. ACTIVITY IN GALACTIC NUCLEI OF COMPACT GROUP GALAXIES IN THE LOCAL UNIVERSE vol.771, pp.2, 2013, https://doi.org/10.1088/0004-637X/771/2/106
  34. DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES vol.834, pp.2, 2017, https://doi.org/10.3847/1538-4357/834/2/186
  35. WHAT DETERMINES THE SIZES OF RED EARLY-TYPE GALAXIES? vol.762, pp.1, 2013, https://doi.org/10.1088/2041-8205/762/1/L4
  36. GALAXY EVOLUTION IN THE MID-INFRARED GREEN VALLEY: A CASE OF THE A2199 SUPERCLUSTER vol.800, pp.2, 2015, https://doi.org/10.1088/0004-637X/800/2/80
  37. MISCLASSIFIED TYPE 1 AGNS IN THE LOCAL UNIVERSE vol.47, pp.5, 2014, https://doi.org/10.5303/JKAS.2014.47.5.167
  38. ENVIRONMENT DEPENDENCE OF DISK MORPHOLOGY OF SPIRAL GALAXIES vol.47, pp.1, 2014, https://doi.org/10.5303/JKAS.2014.47.1.1
  39. THE MID-INFRARED AND NEAR-ULTRAVIOLET EXCESS EMISSIONS OF QUIESCENT GALAXIES ON THE RED SEQUENCE vol.767, pp.1, 2013, https://doi.org/10.1088/0004-637X/767/1/90
  40. An observational proxy of halo assembly time and its correlation with galaxy properties vol.455, pp.1, 2016, https://doi.org/10.1093/mnras/stv2282
  41. Influence of the Void Environment on Chemical Abundances in Dwarf Galaxies and Implications for Connecting Star Formation and Halo Mass vol.864, pp.2, 2018, https://doi.org/10.3847/1538-4357/aad86e
  42. Interactions of galaxies outside clusters and massive groups vol.39, pp.3, 2018, https://doi.org/10.1007/s12036-018-9521-x