DOI QR코드

DOI QR Code

METEORITES: ROCKS FROM THE OUTER SPACE

  • Doh, Seong-Jae (Department of Earth and Environmental Sciences, Korea University) ;
  • Yu, Yong-Jae (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • 투고 : 2010.08.20
  • 심사 : 2010.10.14
  • 발행 : 2010.12.31

초록

According to the historical documents and paintings in many civilizations, rocks that fell from the sky fascinated humans as the message from the God or supernaturals. Scientific progress allows humans to recognize these exciting extraterrestrial objects as meteorites. Meteorites contain a wealth of pivotal information regarding formation of the early Solar System. Meteorites also provide broader scientific insights on, for example, the origin of life, interplanetary transfer of life forms, massive depletion of biosphere on Earth, and evolution of lithosphere on Earth-like planetary bodies.

키워드

참고문헌

  1. Alexander, C. M. O. D., &Wang, J. 2001, Iron Isotopes in Chondrules: Implications for the Role of Evaporation during Chondrule Formation, Meteoritics and Planetary Science, 36, 419-428 https://doi.org/10.1111/j.1945-5100.2001.tb01883.x
  2. Amelin, Y., & Krot, A. 2007, Pb Isotopic Age of the Allende Chondrules, Meteoritics and Planetary Science, 42, 1321-1335 https://doi.org/10.1111/j.1945-5100.2007.tb00577.x
  3. Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. 2002, Lead Isotopic Ages of Chondrules and Calcium?aluminum-rich inclusions, Science, 297, 1678-1683 https://doi.org/10.1126/science.1073950
  4. Amelin, Y., Ghosh, A., & Rotenberg, E. 2005, Unraveling the Evolution of Chondrite Parent Asteroids by Precise U-Pb Dating and Thermal Modeling, Geochimica et Cosmochimica Acta, 69, 505-518 https://doi.org/10.1016/j.gca.2004.05.047
  5. Amelin, Y., Connelly, J., Zartman, R. E., Chen, J. H., Gopel, C., & Neymark, L. A. 2009, Modern U?Pb chrCnometry of Meteorites: Advancing to Higher Time Resolution Reveals New Problems, Geochimica et Cosmochimica Acta, 73, 5212-5223 https://doi.org/10.1016/j.gca.2009.01.040
  6. Antretter, M., Fuller, M., Scott, E., Jackson, M., Moskowitz, B., & Solheid, P. 2003, Paleomagnetic Record of Martian Meteorite ALH84001, Journal of Geophysical Research, 108(E6), 5049, doi:10.1029/2002JE001979
  7. Binzel, R. P., & Xu, S. 1993, Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites, Science, 260, 186-191 https://doi.org/10.1126/science.260.5105.186
  8. Bouvier, A., Blichert-Toft, J., Moynier, F., Vervoort, J. D., & Albarede, F. 2007, Pb-Pb Dating Constraints on the Accretion and Cooling History of Chondrites, Geochimica et Cosmochimica Acta, 71, 1583-1604 https://doi.org/10.1016/j.gca.2006.12.005
  9. Bowring, S. A., & Williams, I. S. 1999, Priscoan (4.00-4.03 Ga) Orthogneisses from Northwestern Canada, Contributions to Mineralogy and Petrology, 134, 3-16 https://doi.org/10.1007/s004100050465
  10. Browning, L. B., McSween, H. Y., & Zolensky, M. E. 1996, Correlated Alteration Effects in CM Carbonaceous Chondrites, Geochimica et Cosmochimica Acta, 60, 2621-2633 https://doi.org/10.1016/0016-7037(96)00121-4
  11. Chen, J. H., & Tilton, G. R. 1976, Isotopic Lead Investigations on the Allende Carbonaceous Chondrite, Geochimica et Cosmochimica Acta, 40, 617-634 https://doi.org/10.1016/0016-7037(76)90108-3
  12. Chen, J. H., & Wasserburg, G. J. 1981, The Isotopic Composition of U and Pb in Allende Inclusions and Meteoritic Phosphates, Earth and Planetary Science Letters, 52, 1-15 https://doi.org/10.1016/0012-821X(81)90202-8
  13. Choi, B. G., Quyang, X., & Wasson, J. T. 1995, Classification and Origin of IAB and IIICD Iron Meteorites, Geochimica et Cosmochimica Acta, 59, 593-612 https://doi.org/10.1016/0016-7037(94)00384-X
  14. Clayton, R. N., & Mayeda, T. K. 1996, Oxygen-Isotope Studies of Achondrites, Geochimica et Cosmochimica Acta, 60, 1999-2018 https://doi.org/10.1016/0016-7037(96)00074-9
  15. Clayton, R. N., & Mayeda, T. K. 1998, Oxygen-Isotope Studies of Carbonaceous Chondrites, Geochimica et Cosmochimica Acta, 63, 2089-2104 https://doi.org/10.1016/S0016-7037(99)00090-3
  16. Clayton, R. N., Mayeda, T. K., & Rubin, A. E. 1984, Oxygen-Isotope Compositions of Enstatite Chondrites and Aubrites, Journal of Geophysical Research, 89, C245-C249 https://doi.org/10.1029/JB089iS01p0C245
  17. Desch, S. J., & Connolly, H. C. 2002, A Model of the Thermal Processing of Particles in the Solar Nebula Shocks: Application to the cooling rates of chondrules, Meteoritics and Planetary Science, 37, 183-207 https://doi.org/10.1111/j.1945-5100.2002.tb01104.x
  18. Galy, A., Young, E. D., Ash, R. D., & O?Nions, R. K. 2000, The forFormation of Chondrules at High Gas Pressures in the Solar Nebula, Science, 290, 1751-1753 https://doi.org/10.1126/science.290.5497.1751
  19. Garrick-Bethell, I., Weiss, B. P., Shuster, D. L., & Buz, J. 2009, Early Lunar Magnetism, Science, 323, 356-359 https://doi.org/10.1126/science.1166804
  20. Gattaccecca, J., Rochette, P., & Bourot-Denise, M. 2003, Magnetic Properties of a Freshly Fallen LL Ordinary Chondrite: the Bensour meteorite, Physics of the Earth and Planetary Interiors, 140, 343-358 https://doi.org/10.1016/j.pepi.2003.10.001
  21. Gattacceca, J., Rochette, P., Gounelle, M., & Van Ginneken, M. 2008, Magnetic Anisotropy of HED and Martian Meteorites and Implications for the Crust of Vesta and Mars, Earth and Planetary Science Letters, 270, 280-289 https://doi.org/10.1016/j.epsl.2008.03.047
  22. Gnos, E., Hofmann, B., Franchi, I. A., Al-Kathiri, A., Hauser, M., & Moser, L. 2002, Sayh al Uhaymir 094: a New Martian Meteorite from the Oman Desert, Meteoritics and Planetary Science, 37, 835-854 https://doi.org/10.1111/j.1945-5100.2002.tb00859.x
  23. Grimm R. E., & McSween H. Y. 1989, Water and the Thermal Evolution of Carbonaceous Chondrite Parent Bodies, Icarus, 82, 244-280 https://doi.org/10.1016/0019-1035(89)90038-9
  24. Halliday, A. N., & Lee, D-C. 1999, Tungsten Isotopes and the Early Development of the Earth and Moon, Geochimica et Cosmochimica Acta, 63, 4157-4179 https://doi.org/10.1016/S0016-7037(99)00315-4
  25. Halliday, A. N. 2000, Terrestrial Accretion Rates and the Origin of the Moon, Earth and Planetary Science Letters, 176, 17-30 https://doi.org/10.1016/S0012-821X(99)00317-9
  26. Halliday, A. N. 2004, Mixing Volatile Loss and Compositional Change during Impact-Driven Accretion of the Earth, Nature, 427, 505-509 https://doi.org/10.1038/nature02275
  27. Huss, G. R., Keil, K., & Taylor, G. J. 1981, The Matrices of Unequilibrated Ordinary Chondrites: Implications for the Origin and History of Chondrites, Geochimica et Cosmochimica Acta, 45, 33-51 https://doi.org/10.1016/0016-7037(81)90262-3
  28. Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S., & Srinivasan, G. 2001, Aluminum-26 in Calcium-Aluminumrich Inclusions and Chondrules from Unequilibrated Ordinary Chondrites, Meteoritics and Planetary Science, 36, 975-997 https://doi.org/10.1111/j.1945-5100.2001.tb01934.x
  29. Hutchison, R. 2004, Meteorites: A petrologic, Chemical, and Isotopic Synthesis, Cambridge University Press, Cambridge. pp. 506
  30. Ireland, T. R., Compston, W., Williams, I. S., & Wendt, I. 1990, U-Th-Pb Systematic of Individual Perovskite Grains from the Allende and Murchison Carbonaceous Chondrite, Earth and Planetary Science Letters, 101, 379-387 https://doi.org/10.1016/0012-821X(90)90167-V
  31. Jacobsen, S. B. 2005, The Hf-W Isotopic System and the Origin of the Earth and Moon, Annual Reviews of Earth and Planetary Sciences, 33, 531-570 https://doi.org/10.1146/annurev.earth.33.092203.122614
  32. Jull, A. J. T., Wlotzka, F., Palme, H., & Donahue, D. J. 1990, Distribution of Terrestrial Age and Petrologic Type of Meteorites fromWestern Libya, Geochimica et Cosmochimica Acta, 54, 2895-2899 https://doi.org/10.1016/0016-7037(90)90028-J
  33. Jull, A. J. T., Eastoe, C. J., & Cloudt, S. 1997, Isotopic Composition of Carbonates in the SNC Meteorites, Alan Hills 84001 and Zagami, Journal of Geophysical Research, 102, 1663-1669 https://doi.org/10.1029/96JE03111
  34. Jull, A. J. T., Courtney, C., Jeffrey, D. A., & Beck, J. W. 1998, Isotopic Evidence for a Terrestrial Source of Organic Compounds Found in Martian Meteorites, Allan Hills 84001 and Elephant Moraine 79001, Science, 279, 366-368 https://doi.org/10.1126/science.279.5349.366
  35. Kirschvink, J. L., Maine, A. T., & Vali, H. 1997, Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001, Science, 275, 1629-1633 https://doi.org/10.1126/science.275.5306.1629
  36. Kita, N. T., Nagahara, H., Togashi, S., & Morishita, Y. 2000, A Short Duration of Chondrule Formation in the Solar Nebula: Evidence from 26Al in Semarkona Ferromagnesian Chondrules, Geochimica et Cosmochimica Acta, 64, 3913-3922 https://doi.org/10.1016/S0016-7037(00)00488-9
  37. Kleine, T., Munker, C., Mezger, K., & Palme, H. 2002, Rapid Accretion and Early Core Formation on Asteroids and the Terrestrial Planets from Hf-W Chronometry, Nature, 418, 952-955 https://doi.org/10.1038/nature00982
  38. Kleine, T., Palme, H., Mezger, K., & Halliday, A. N. 2005, Hf-W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon, Science, 310, 1671-1674 https://doi.org/10.1126/science.1118842
  39. Kletetschka, G., Kohout, T., & Wasilewski, P. J. 2003, Magnetic Remanence in the Murchison Meteorite, Meteoritics and Planetary Science, 38, 399-405 https://doi.org/10.1111/j.1945-5100.2003.tb00275.x
  40. Krot, A. N., Amelin, Y., Cassen, P., & Meibom, A. 2005a, Young Chondrules in CB Chondrites from a Giant Impact in the Early Solar System, Nature, 436, 989-992 https://doi.org/10.1038/nature03830
  41. Krot, A. N., Yurimoto, H., Hutcheon, I. D., & MacPherson, G. J. 2005b, Relative Chronology of CAI and Chondrule Formation: Evidence from Chondrule-Bearing Igneous CAIs, Nature, 434, 998-1001 https://doi.org/10.1038/nature03470
  42. Krot, A. N., Keil, K., Goodrich, C. A., Scott, E. R. D., & Weisberg, M. K. 2004, Classification of Meteorites, In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets ed. By Davis, A. M., pp. 83-128. Elsevier, Oxford
  43. Lawrence, K., Johnson, C., Tauxe, L., & Gee, J. S. 2008, Lunar Paleointensity Measurements: Implications for Lunar Magnetic Evolution, Physics of the Earth and Planetary Interiors, 168, 71-87 https://doi.org/10.1016/j.pepi.2008.05.007
  44. Lizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., & Windley, B. F. 2006, 4.2 Ga Zircon Xenocryst in an Acasta Gneiss from Northwestern Canada: Evidence for Early Continental Crust, Geology, 34(4), 245-248 https://doi.org/10.1130/G22124.1
  45. Mason, B. 1967, Meteorites, Meteoritics, 55, 429-455
  46. McCord, T. B., Adams, J. B., & Johnson, T. V. 1970, Asteroid Vesta: Spectral Re°ectivity and Compositional Implications, Science, 168, 1445-1447 https://doi.org/10.1126/science.168.3938.1445
  47. Nishiizumi, K., Reedy, R. C., & Arnold, J. R. 1988, Exposure History of Four Lunar Meteorites, American Scientists, 23, 294-295
  48. Nishiizumi, K., Elmore, D., & Kubik, P. W. 1989, Update on Terrestrial Ages of Antarctic Meteorites, Earth and Planetary Science Letters, 93, 299-313 https://doi.org/10.1016/0012-821X(89)90029-0
  49. Nishiizumi, K., Kohl, C. P., Shoemaker, E. M., Arnold, J. R., Klein, J., Fink, D., & Middleton, R. 1991, In-Site 10Be-26Al Exposure Ages at Meteor Crater, Arizona, Geochimica et Cosmochimica Acta, 55, 2699-2703 https://doi.org/10.1016/0016-7037(91)90388-L
  50. Nyquist, L. E., Bogard, D. D., Shih, C. Y., Greshake, A., Stoffler, D., & Eugster, O. 2001, Ages and Geologic Histories of Martian Meteorites, Space Science Review, 96, 105-164 https://doi.org/10.1023/A:1011993105172
  51. Patterson, C. 1956, Age of Meteorites and the Earth, Geochimica et Cosmochimica Acta, 10, 230-237 https://doi.org/10.1016/0016-7037(56)90036-9
  52. Peck, W. H., Valley, J. W., Wilde, S. A., & Graham, C. M. 2001, Oxygen Isotope Ratios and Rare Earth Elements in 3.3 to 4.4 Ga Zircons; Ion Microprobe Evidence for High Delta 18O Continental Crust and Oceans in the Early Archean, Geochimica et Cosmochimica Acta, 65, 4215-4229 https://doi.org/10.1016/S0016-7037(01)00711-6
  53. Pepin, R. O. 1991, On the Origin and Evolution of Terrestrial Planet Atmospheres and Meteoritic Volatiles, Icarus, 92, 2-79 https://doi.org/10.1016/0019-1035(91)90036-S
  54. Prior, G. T. 1920, The Classification of Meteorites, Mineralogical Magazine, 19, 51-63 https://doi.org/10.1180/minmag.1920.019.90.01
  55. Rubin, A. E., Keil, K., & Scott, E. R. D. 1997, Shock-Metamorphism of Enstatite Chondrites, Geochimica et Cosmochimica Acta, 61, 847-858 https://doi.org/10.1016/S0016-7037(96)00364-X
  56. Sears, D. W. G., Grossman, J. N., Melcher, C. L., Ross, L. M., & Mills, A. A. 1980, Measuring the Metamorphic History of Unequilibrated Ordinary Chondrites, Nature, 287, 791-795 https://doi.org/10.1038/287791a0
  57. Sears, D. W. G., Grossman, J. N., & Melcher, C. L. 1982, Chemical and Physical Studies of Type 3 Chondrites ??I: Metamorphism relRelated Studies of Antarctic and Other Type 3 Ordinary Chondrites, Geochimica et Cosmochimica Acta, 46, 2471-2481 https://doi.org/10.1016/0016-7037(82)90370-2
  58. Selkin, P. A., Gee, J. S., Meurer, W. P., & Hemming, S. R. 2008, Paleointensity Record from the 2.7 Ga Stillwater Complex, Montana, Geochemistry Geophysics Geosystems, 9(12), Q12023, doi:10.1029/2008GC001950
  59. Stevenson, D. J. 2003, Planetary Magnetic Fields, Earth and Planetary Science Letters, 208, 1-11 https://doi.org/10.1016/S0012-821X(02)01126-3
  60. Sto²er, D., Keil, K., & Scott, E. R. D. 1991, Shock Metamorphism of Ordinary Chondrites, Geochimica et Cosmochimica Acta, 55, 3845-3867 https://doi.org/10.1016/0016-7037(91)90078-J
  61. Streckeisen, A. L. 1976, To Each Plutonic Rock Its Proper Name, Earth Science Review, 12, 1-33 https://doi.org/10.1016/0012-8252(76)90052-0
  62. Streckeisen, A. L. 1979, Classification and Nomenclature of Volcanic Rocks, Lamprophyeres, Carbonatites, and Melilitic Rocks: Recommendations and Suggestions of the IUGS Subcommision on the systematics of Igneous Rocks, Geology, 7, 331-335 https://doi.org/10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2
  63. Tarduno, J. A., Cottrell, R. D., Watkeys, M. K., & Bauch, D. 2007, Geomagnetic Field Strength 3.2 Billion Years Ago Recorded by Single Silicate Crystals, Nature, 446, 657-660 https://doi.org/10.1038/nature05667
  64. Tarduno, J. A., Cottrell, R. D., Watkeys, M. K., Hofmann, A., Doubrovine, P. V., Mamajek, E. E., Liu, D., Sibeck, D. G., Neukirch, L. P., & Usui, Y. 2009, Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago, Science, 327, 1238-1240 https://doi.org/10.1126/science.1183445
  65. Van Schmus, W. R., & Wood, J. A. 1967, A Chemical-Petrologic Classification for the Chondritic Meteorites, Geochimica et Cosmochimica Acta, 31, 747-765 https://doi.org/10.1016/S0016-7037(67)80030-9
  66. Vogt, S., Herzog, G. F., & Reedy, R. C. 1990, Cosmogenic Nucleides in Extraterrestrial Materials, Reviews in Geophysics, 28, 253-275
  67. Weiss, B. P., Kirschvink, J. L., Baudenbacher, F. J., Vali, H., Peters, N. T., Macdonald, F. A., & Wikswo, J. P. 2000, A Low Temperature Transfer of ALH84001 from Mars to Earth, Science, 290, 791-795 https://doi.org/10.1126/science.290.5492.791
  68. Weiss, B. P., Vali, H., Baudenbacher, F. J., Kirschvink, J. L., Stewart, S. T., & Shuster, D. L. 2002, Records of an Ancient Martian Magnetic Field in ALH84001, Earth and Planetary Science Letters, 201, 449-463 https://doi.org/10.1016/S0012-821X(02)00728-8
  69. Weiss, B. P., Berdahl, S., Elkins-Tanton, L. T., Stanley, S., Lima, E. A., & Carporzen, L. 2008, Magnetism on the Angrite Parent Body and the Early Differentiation of Planetesimals, Science, 322, 713-716 https://doi.org/10.1126/science.1162459
  70. Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P., & Christensen, U. R. 2010, Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation, Space Science Review, 152, 341-390 https://doi.org/10.1007/s11214-009-9580-z
  71. Wilde, S. A., Valley, J. W., Peck, W. H., & Graham, C. M. 2001, Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on Earth 4.4 Gyr Ago, Nature, 409, 175-178 https://doi.org/10.1038/35051550
  72. Wlotzka, F., 1993. AWeathering Scale for the Ordinary Chondrites. Meteoritics, 28, 460
  73. Yin, Q., Jacobsen, S. B., Yamashita, K., Blichert-Toft, J., Telouk, P., & Albarede, F. 2002, A Short Timescale for Terrestrial Planet Formation from Hf-W Chronometry of Meteorites, Nature, 418, 949-952 https://doi.org/10.1038/nature00995
  74. Yu, Y., & Gee, J. S. 2005, Spinel in Martian Meteorite SaU 008: Implications for Martian Magnetism, Earth and Planetary Science Letters, 232, 287-294 https://doi.org/10.1016/j.epsl.2004.12.015
  75. Yu, Y., Doh S.-J., Kim W., & Min, K. 2009, Ancient Stable Magnetism of the Richardton H5 Chondrite, Physics of the Earth and Planetary Interiors, 177, 12-18 https://doi.org/10.1016/j.pepi.2009.07.003