22 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory
DOI:10.5392/1J0C.2010.6.4.022

Memory Compaction Scheme with Block-L evel Buffer
for Large Flash Memory

Weonil Chung
Dept. of Information Security Engineering
Hoseo University, Asan, Chungcheongnam-Do, Korea

Liangbo Li
Dept. of Computer and Information Engineering
Inha University, Inchoen, Korea

ABSTRACT

In flash memory, many previous garbage collection methods only merge blocks statically and do not consider the contents of buffer.
These schemes may cause more unnecessary block erase operations and page copy operations. However, since flash memory has the
limitation of maximum rate and life cycle to delete each block, an efficient garbage collection method to evenly wear out the flash
memory region is needed. This paper proposes a memory compaction scheme based on block-level buffer for flash memory. The
proposed scheme not only merges the data blocks and the corresponding log block, but also searches for the block-level buffer to find
the corresponding buffer blocks. Consequently, unnecessary potential page copying operations and block erasure operations could

be reduced, thereby improving the performance of flash memory and prolonging the lifetime of flash memory.

Keywords. Flash Memory, Memory Compaction, Garbage Collection, Block-level buffer, FTL.

1. INTRODUCTION

in conjunction with an existing operating systenmmtake linear
flash memory appear to the system like a disk driee key

As the usage of mobile devices and mobile phones harole of FTL is to redirect each write request fréme host file

rapidly increased, flash memory has been considasethe
next-generation storage systems to replace the -diskd
because it has some advantages such as fastes apmed,
lightweight, low power consumption, small size askiock
resistance. However, since flash memory is chaiaeteby its
erase-before-write operation, it must be erasedrbafew data
is written to a given physical location. Unfortuelst write
operations are performed in unit of sector, whilmse
operations are executed in unit of block, usuallyblock
consists of many sectors.
accumulate obsolete sectors after lots of updatestd the
erase-before-write characteristic. To make spaae rfew
blocks, obsolete sectors must be reclaimed. Thg waly to
reclaim a sector is to erase an entire unit, inctvithis process
is called garbage collection. Moreover, flash mgmean be
erased in limited times. Therefore, flash memorgunes a
well-designed garbage collection scheme to everdgrwout
the flash memory region [1]-[5].

Some previous work focus on how to design a welL FT
(Flash Translation Layer) and how to reduce wriperations
using buffer mechanism [6]-[10]. FTL is the drivtkiat works

YCorresponding author, E-mail: wnchung@hoseo.edu
Manuscript received Sep. 17, 2010 ; accepted Dec. 20, 2010

system to an empty area that has been alreadydeiase
advance. The buffer mechanism is also been useithsh
memory to reduce the write requests. Since theedrafore-
write characteristic of flash memory, frequent updawill
make the performance of flash memory decrease eWriffer
cache could gather these frequent updates and thake to
one write request. Therefore, buffer mechanism cesliuthe
write operations to flash memory.

Among the previous works [11]-[14], the garbagdemilon

Besides, flash memory will is done only considered the contents of flash mgmderging

the data block and log block is to copy valid paigethem to a
new block. However, when the contents in bufferfarshed to
flash memory, the pages in new block produced bypage
collection are possible to become invalid. Undés #ituation,
flash memory needs more pages copy operations &ak b
erase operations in next garbage collection prodegsally, it
can be avoided by making a well garbage collecireme.

In this paper, we propose a novel garbage collectiethod
called block-level buffer garbage collection. WHeRL needs
to merge blocks during the garbage collection pscé will
refer to the contents of buffer. By examining tlentents of
buffer, FTL copies the best corresponding buffescké to
flash memory or selects another appropriate blackviatim
block to improve the performance of flash-basedraste

International Journal of Contents, Vol.6, No.4, Dec 2010

Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

system. In shortly, the proposed method is dividgd two
parts: how to merge blocks based on block-levefeoudnd
how to select a log block as victim block. We foars these
two issues in this paper. First, our novel garbagkection
method merges block with three kinds of blocks: gcks,
data blocks and buffer blocks. Second, our victifock
selection method selects a log block as victim lbldgough
searching the contents of buffer. The proposed odetban

reduce unnecessary potential page copying numbeds a

unnecessary potential block erasure numbers.

2. RELATED WORKS

2.1 Flash Memory

Flash memory is a type of nonvolatile, electricahlasable
programmable read-only memory. In this paper, aopgsed
method mainly focuses on NAND flash memory.

NAND flash memory consists of blocks, each of which
consists of pages [7]. There are three basic dpasafor a
NAND flash memory: read, write and erase. Read aritew
operations are performed on a page basis, whilecrase
operation is executed on a block basis. There arewa
drawbacks as follows: 1) No in-place-update: Themamwy
must be erased before new data can be written. idrse
problem is that the erase operation is performedkdby block,
while the write operation is performed page by pagg
Asymmetric operation costs: For flash memory, repérations
are faster than write operations. In addition, aswite
operation may accompany an erase operation, thée wri
operational latency becomes even longer. 3) Unewear-out:
The number of erasures on each block is limited,0@,000 or
1,000,000 times. Once the number is reached, thek ldannot
be used any more.

Therefore, the number of write and erase operativsild
be minimized not only to improve the overall penfiance but
also to maximize the lifetime of NAND flash memory.

2.2 Flash Trandation Layer (FTL)

FTL is a translation layer between the native $iystem and
flash memory [10]. The main role of FTL is to enteldhe
functionality of block device with flash memory.dtulates a
hard disk, and provides logical sector updates. EThieves
this by redirecting each write request form filestgyn to an
empty location in flash memory that has been erased
advance, and by maintaining an internal mappindetab
record the mapping information from logical seatamber to
physical location. Besides the address translatiom flogical
sectors to physical sectors, FTL carries out sévether
important functionalities, such as guaranteeing @ansistency
and reclaiming the discarded data blocks for reuse.

The mapping between the logical address and thsiqaly
address can be managed at sector, block, or hybvel.
Therefore, the mapping scheme is categorized \eittos-level
mapping, block-level mapping, and hybrid mapping[$,[9].
When free log blocks are not sufficient, the meogeration
called garbage collection will happen. Since any lhdock is
associated with data blocks, merge operation isofwy valid
data from log block and data blocks to new freeckldVhile

23

executing the merge operation, multiple page copsrations
and erase operations are invoked. Therefore, nmegrgeations
seriously degrade the performance of flash memepgaise of
extra operations.

Generally, large sequential write operations cadude
switch merge operations, while random write operetiinduce
full merge operations. Therefore, if random writgemations
occur frequently, the performance of the flash mgnsystem
decreases.

2.3 Flash Buffer Cache

To decrease the number of extra operations, thte \Wriffer
management scheme is required to 1) decrease thbenwof
merge operations by clustering pages in the samekbdnd
evicting them at the same time, 2) evict pages gshah the
FTL may invoke switch merge or partial merge operet
which show relatively low cost rather than the faoflerge
operation, which is expensive, and 3) detect setlepage
writes and evict those sequential pages prefetbntand
simultaneously [2], [3], [15].

The buffer can manage data in page-level management
buffer and block-level management buffer. In pageel
scheme, pages are evicted to flash memory pageabe. p
When buffer pages are managed in a block-levelrsehpages
are clustered by corresponding block number in flash
memory. Block-level buffer management policy not yonl
invokes relatively fewer merge operations than gagel
buffer management policy but also invokes switchrgaeor
partial merge rather than full merge for merge apen.
Block-level buffer management policy shows betteerail
performance than the page-level buffer managemefityp
[12], [16]-[18].

2.4 Cleaning Policies

Cleaning policies determine when to clean, whictckdoto
clean, and where to write data in order to minimikaning
cost. The cleaning cost includes erasure cost lamanfgration
cost for copying valid data into other blocks. listpaper, we
measure the quality of cleaning policy by block sera
numbers and page copying numbers with previous sveudch
as greedy policy, cost-benefit policy [11], andcost age times
policy [13]. Greedy policy considers only cleaning cost.

Greedy policy always selects blocks with the largest antou
of garbage for cleaning, hoping to reclaim as maphce as
possible with the least cleaning worBost-benefit policy [14]
chooses to clean blocks that maximize the formula:
(benefit/cost) = (age* (1-u))/2u, whereu is the block utilization
and(1-u) is the amount of free space reclaimed. apeis the
time since the most recent modification (i.e., thst block
invalidation) and is used as an estimate of howg lthre space
is likely to stay free. The cost of cleaning a lBld€ 21 that one
u is to read valid pages and the otheas to write them back.
Cost Age Times (CAT) policy [16] chooses to clean blocks that
minimize the formula: (CleaingCost)* Age’* (number of
Cleaning). TheCleaning Cost is defined as the cleaning cost of
every useful write to flash memory a41-u), whereu is the
percentage of valid data in a blo&kery (1-u) write incurs the
cleaning cost of writing out valid data. TheAge is defined as
the elapsed time since the block was created. Number of

International Journal of Contents, Vol.6, No.4, Dec 2010

24 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

Cleaning is defined as the number of times a block has beenfrom the log blocks to free blocks, then fills eaahpty sector

erased.

In comparisonCost-benefit policy considers cleaning cost
and age of data. Ancbst age times policy considers cleaning

cost, age of the data, and number of cleaning. Bthe@above
cleaning policies focus on selecting a victim blstatically in
flash memory. The proposed method is different fribrem,
since we not only consider the static state ohflamory, but
also consider the dynamic state of buffer cache.

3. BLOCK-LEVEL BUFFER AWARE MERGE

3.1 Buffer-aware Block Merge

In order to prevent potential unnecessary page atrs,
the proposed method refers to the contents of bdfieng the
block merging process. There is trade-off betweeergm
performance and the buffer hit ratio. First, moyeto-date
blocks in the buffer into new allocated data blocis improve
the merge performance. Second, if the correspontdiagks
will not be evicted to flash memory in the neawufat they will
be updated frequently. It causes that moving théseks into
flash memory will make the buffer hit ratio decregsin this
case, it is beneficial to choose another log blaskvictim log
block. Therefore, the issue can be viewed as hownéoge
blocks and how to select victim log block.

As mentioned before, the cleaning policy determindetn
to clean, which blocks to clean and where datarttewin this
paper, we do not discuss the issue of when to ckiane the
cleaning can start when the number of free bloaksolmes
lower than a threshold. However, we will set a shdd to test
the proposed method in our experiments. If no nampty
sectors exist in the log blocks, the proposed ggalmllection
approach chooses one of the log blocks as victichraarges
the victim block with its corresponding data blocksd its
corresponding buffer blocks.

The merge operation proceeds as follows: Firsieryia log
block as victim block, find the corresponding dbtacks and
allocate the same amount of free blocks. Beforeqasing the
merge operation, it is necessary to determinedfelock that
will serve as the merge target. Three existingriteapolicies
which selected a victim log block according to elifint
features are described. In this paper, we will gmeés. new log
block selection method which is distinct from thriséng
cleaning policies. In hybrid mapping scheme of Fifiere is a
block-level mapping table addition to a page-lem@pping
table, in which the page-level mapping table cargtathe
separate page mapping information between log blackl the
corresponding data blocks. Therefore, we can obtam
corresponding data blocks when given a log blodloubh
searching the page-level mapping table. Secondclsethe
buffer to find whether the blocks which have theneanumber
to the corresponding data blocks exist or not. locklevel
buffer, data are organized in unit of block. Eadtick has a
unique number called logical address which is idahto the
logical number of data blocks in flash memory. HEfere, it is
easy to find the corresponding buffer blocks whenoltained
the corresponding data blocks. Third, flush theagsdn buffer
blocks to free blocks, and copy the most up-to-degesion

in the free block with its corresponding sectortire data
blocks. Fourth, erase the log block and correspundiata
blocks.

Block 5 Block 4

Victim Log Block
+

Bo B Lo Li
Invalid
Page -0 4 0
Data 1 5 1 Log
Blocks Blocks
2 6

New
Blocks

Fig. 1. Merge blocks refer to contents of buffer

Fig. 1 is the typical process of our proposed bliesiel
buffer aware merge method. In this fig., BO and B& data
blocks, LO and L1 are log blocks. To log block ldata blocks
BO and B1 are its corresponding data blocks, blodk the
buffer is its corresponding buffer block.

When log block LO is selected as victim block, wedfthat
BO and B1 are its corresponding data blocks andetla¢so
exists corresponding buffer block 1 in the buffend then we
allocate two new blocks NO and N1 from free blockgxt,
sector 5 and 6 in buffer are first flushed into naacks, then
copy sector 0, 1 and 7 in log block to new blodksally fill
the empty sectors using sector 2, 3 and 4 in datk& After
merge all the blocks, erase log block LO and datekis BO and
B1.

3.2 Victim Block Selection

In step two of searching the buffer in the proposgproach,
there may cause three situations according whetteeblocks
which have the same number to corresponding datzk$lin
buffer is found or not.

In case of not found, the garbage collection ordeds to
merge the log block and its corresponding datakslod@his
process is done like the buffer-unaware merge tipera-ig. 2
shows the relationship between buffer and the ftasmory.

In case of found and the found blocks belong to l¢zest
recently used blocks, if the blocks locate at tharrend of the
buffer list, this means these blocks will be flushi flash
memory in the shortly future. It is appropriatenmve these
sectors in the buffer into the new free blocks. @uwposed

International Journal of Contents, Vol.6, No.4, Dec 2010

Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 25

method is suitable for this situation. Fig. 3 showse

relationship between buffer and the flash memory.

Block 2 Block 5 Block 4

Victim Log Block
+

Bo B Lo La
Invalld4 0 4 o
Page
Data 1 5 1 Log
Blocks Blocks
2 6 6
3 7

New
Blocks

Fig. 2. No corresponding blocks in buffer

Block 3 Block 1

Victim Log Block
+
Bo B Lo Li
Invalid
Page - 0
Data 1 5 1
Blocks

Log
Blocks

New
Blocks

Fig. 3. Corresponding blocks locate at the nearcéiide
buffer

In case of found but the found blocks are hot dpdke
blocks locate at the near start of the buffer lglhjch means
these sectors in the found blocks will be updateduently. If
we choose these blocks to flush to flash memowy bilifer hit
ratio will decrease. Therefore, it is beneficial flod another
log block as victim log block. Fig. 4 shows theat@nship
between buffer and the flash memory.

Block 2 Block 5

Victim Log Block
¥

Bo B Lo Li
Invallda 0 4 0
Page
Data 1 5 1 Log
Blocks Blocks
216 6
317 7

Fig. 4. Corresponding blocks locate at the neat sfahe
buffer

Through our analysis, whether or not
corresponding buffer block to flash memory dependsthe
block position where blocks reside in the buffeot Hlocks are
these which locate at the near start of the buffdrje clod
blocks are those which locate at the near end efhthffer.
Since hot blocks are accessed frequently, we steudil evict
hot blocks in advance. Otherwise, the buffer hiiorawill
decrease. To address this issue, the buffer nedtseshold
line to divide which to hot block area and colddd@rea. Only
blocks which reside in clod block area could bsliled to flash

memory. Fig. 5 shows the position of hot blocks amwdd
blocks in buffer cache.

Hot Blocks Threshold Line Cold Blocks

Block 6 Block 2 Block 5 Block 4 Block 1 Block 3 Block 7

Fig. 5. The position of hot blocks and cold blocks

Here we use a novel concept named locality proiatio
judge the importance of the blocks in the buffeneTdea of
locality probability is described as follows:

We assume the current number of blocks in buffer, ithe
basic locality probability of the block which resith the end of
the buffer list is p, which is the lowest valueg tbifference
value between two blocks is X, this means the itcal
probability of the front block is larger than itadk block, and
their difference value is x, the total sum of dibdk locality
probability is 1. So we get:

P () + (pH2x) + (-1 = | Eq. (1)

International Journal of Contents, Vol.6, No.4, Dec 2010

evicting a

26 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

If we set the difference value x a specific valaegording to
the number n, we can calculate the basic localibpability p
and the locality probability of every block. In theal world, set
a threshold of the locality probability depending specific
devices. The blocks whose locality probability Erghan the
threshold considered as hot blocks, and less tmanhreshold
considered as least recently used blocks.

The buffer space is partitioned into two areas he t
threshold line. Usually, the hot block area holdsrall part of
the buffer, while the cold block area holds mosthaf buffer.
We use a partition paramete 0< o < 1) to divide the buffer.
The partition parameter is defined as the ratibiafblocks to
total buffer blocks. Ifa = 0.1, then 10 percent of the total
number of blocks in the buffer are hot blocks gl remaining
90 percent of the blocks are cold blocks. This meass a
variant of locality probability. According to theefihition of
locality probability, we could calculate the lod¢glprobability
of every block. For example, n = 10, set x = 0\W#, get the
basic locality probability p = 0.055 according tq.H. In turn,
we could calculate every block’s locality probatilifrom the
top of buffer to the end, 0.145, 0.135, 0.125, 5,10.105,
0.095, 0.085, 0.075, 0.065 and 0.055. If the troleskalue is
0.130, 20 percent of the total number of blockshatt blocks
and 80 percent of the blocks are cold blocks. Rer tuffer
management policies which manage blocks with hat @oid
blocks, we need not divide the buffer to two pemtis. For
example, using Cold and CLC(Largest Cluster Policy) b5
manage buffer, our proposed method only need tat tiee
size-independent LRU cluster list as hot block aed size-
dependent LRU cluster list as cold block area. is plaper, we
use the parameter to describe the hot block area and cold
block area since it is convenient to implement. &periments
treat the buffer for the general purpose and use pBlity to
manage the buffer.

In the section of existing cleaning policies, watdd several
cleaning policiesgreedy policy, cost-benefit policy and Cost
Age Times (CAT) policy. In garbage collection process, a main
task is to choose a block as victim block among ft used
blocks. Through calculating under different cleanpolicies,
used blocks are listed in a queue. The block with highest
satisfied condition will be selected as victim HodJsed
blocks are selected one by one in the queue.

In our proposed method, based on the used blockeqguee
will check whether or not a used block can be settas
victim block in Fig. 6.

Log Block Queue

sy H A H A H H e
dHooodg

Candidate [victim block

In the hot block area

the corresponding
buffer block:

Not in the hot block area

Victim log block

Fig. 6. The process of selecting victim log block

For simplicity, we use LRU policy to manage the hlidgcks
instead of the existing cleaning policies in thaper. That
means log blocks are managed in a queue under LRty po
the least recently used log block is first sele@ed candidate
victim block. Then check the corresponding bufféscks of
this log block, if the corresponding buffer bloaks not reside
in the hot block area, this log block is selected/iatim block.
If the corresponding buffer blocks reside in thé lilock, move
this log block to the MRU position of the queue aetect next
log block as candidate victim block.

In the process of checking the corresponding buffecks,
we will check whether or not the corresponding éufflocks
locate at the hot block area. If the correspondinffer blocks
do not locate at the hot block area, it may loaitéhe cold
block area or it may do not appear at the buffechea
According to this, we will make the correct decisithat
merging blocks with buffer blocks or not. Thereforaur
proposed method comes. Fig. 7 shows the detailshef
processing.

Log Block Queue

psition H H H H H H postion
misishsl=

In the hot block area

HEEEE

Corresponding buffer block

EEIEEIE

Threshold line

(1|

Candidate victim block

Check the cc
buffer

srresponding
blocks

¥0[q 11nq Fpuodsazio)y

Threshold line

IE Y00[q P00 A} U]

Bufferblock Logblock Data block |

New block

Fig. 7. The whole process of the proposed method

Above all, our victim block selection depends oa turrent
contents in the buffer cache, which is dynamic difterent
from the others cleaning policies.

4. PERFORMANCE EVALUATIONS

4.1 Experimental Environment

As analyzed before, the main advantage of propostod
is to reduce the potential unnecessary page nogratsts and
block erase costs. In other words, during the ®oé garbage
collection, our approach can improve flash weaelieg
performance and prolong the lifetime of flash memdry
reducing unnecessary page copy costs and block eoass.

The experiments of proposed method will generatebthck
erasure numbers and page copying numbers, so wéhiget
information as the results to measure the expetihen
performance. We assume that every block consistspages,
the flash memory has 100 blocks, and the log bckip has

International Journal of Contents, Vol.6, No.4, Dec 2010

Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

10 log blocks, the buffer can maintain 10 blockewti is full.
The system considers the number of pages as iMgith
different input page numbers, different garbagelectibn
scheme will produce different block erasure numlaerd page
copying numbers. The fewer numbers produced, thterbbat
scheme is. The simulation environment is shownahld 1.

Table 1. Experimental Environments

Item Configuration
Computer PC
CPU Intel Core2 Duo 2Ghz
Main Memory 2GB
HDD 500GB
oS Microsoft Windows XP
Language MS Visual C++ 2005

4.2 Experimental Results

We divide the experimental results as two parte@ting to
the access mode of random access and high loaditgss.
High locality access means that accessing moraiémtty and
more intensively concentrate at a specific are@ash memory.
Because the cost-benefit cleaning policy and CAT nitea
policy is similar besides the number of cleaningrelateristic,
we only compare our proposed method with the greedy
cleaning policy and the cost-benefit cleaning polic

4.2.1 Performance of random access

First we compare the performance of buffer-awaregme
and buffer-unaware merge. Buffer-aware merge is our
proposed scheme and buffer-unaware merge is tdéidreal
merge operation which does not refer to the coatehbuffer.

3000

B Buffer-aware merge

2500

OBuffer-unaware merge

2000

1500

1000

500

Block erasure numbers

500 1000 1500 2000 2500

The number of input pages

3000

Fig. 8. Block erasure numbers

12000

B Buffer-aware merge
10000

OBuffer-unaware merge

8000

6000

4000

2000

Page copying numbers

500

1000 1500 2000 2500 3000

The number of input pages

Fig. 9. Page copying numbers

In Fig. 8, the x-axis denotes the random input pagabers
for write to flash memory and the y-axis represehts block

27

erasure numbers when collecting garbage. In Fithex-axis
denotes the same meaning to Fig. 8 and the y-apiesents
the page copying numbers when collecting garbage.

From these two figures, we find that buffer-awarerge
scheme can save more block erasure numbers andqagag
numbers than buffer-unaware merge scheme.

&

|2

9 3500

g 3000 | —®— The proposed method

€ e00 —— The cost-benefit policy

o - —A— The greedy policy

7 2000

© 1500

(]

~ 1000

8 500

om 0 1 1 1 1
500 1000 1500 2000 2500 3004

The number of input pages

Fig. 10. Erasure numbers of comparing with existilggining

policies
<
S 14000
E 12000 |—*— The proposed metho
€ 10000 | The cost-benefit polic
= —a&— The greedy policy
S 8000
§ 6000
% 4000
2 2000
o 0 1 1 1 1
500 1000 1500 2000 2500 300
The number of input pages

Fig. 11. Copying numbers of comparing with existiheaning

policies

Next, we compare our proposed scheme with theiegist
cleaning policies. Fig. 10 and 11 shows the resofitblock
erasure numbers and page copying numbers resggctiv&ig.
10 and 11, the line marked star denotes the grpetigy, the
line marked triangle denotes the cost-benefit pddicd the line
marked rectangle represents our proposed method.

In random access mode, the cost-benefit cleanitigypis
better than the greedy cleaning policy, becausedlsebenefit
policy not only considers the block utilization buatiso
considers the age of blocks. Our proposed methgukedorms
the two policies, since we consider the dynamicteais of
buffer.

4.2.2 Performance of high locality access

The case of high locality access is different frandom
access. Fig. 12 and 13 show the compared resulbsfteér-
aware merge scheme and buffer-unaware merge scheme.

Compared to random access, buffer-aware merge scheme
can reduce more block erasure numbers and pagengopy
numbers than buffer-unaware merge scheme in higalitg
access mode. This is because in high locality accesle, data
are concentrated and buffered in buffer cache. Ugiro
checking the contents of buffer cache in advancenym
unnecessary block erase operations and page capwtimms

International Journal of Contents, Vol.6, No.4, Dec 2010

28 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

can be avoided. Therefore, the performance canmipeoved
more than in random access.

In Fig. 13, the page-copying numbers is reducedhnmore
than block-erasure numbers in Fig. 12. The reasdhat high
locality access causes blocks with full obsoletgegamuch
more than partial obsolete pages. Therefore, switedrge
operations is performed much more than partial
operations and full merge operations. In switch gagronly
block erase operations are necessary.

600

B Buffer—aware merge
O Buffer—unaware merge
300

200
100
0 1 1

1500 2000 2500 3000 3500

500

400

Block erasure numbers

The number of input pages

Fig. 12. Erasure numbers of high locality

2000
1800 B Buffer—aware merge

1600 O Buffer—unaware merge
1400 [
1200
1000
800

600 |
400
200
o . mm | BE |

1500 2000 2500 3000 3500

Page copying numbers

The number of input pages

Fig. 13. Copying numbers of high locality

Finally, we compared the performance of high Idgali

access with the existing cleaning policies.

800 r—@— The proposed method

600 L™ The cost-benefit policy.
—a&— The greedy poli
400 A/‘/
o *—.
200

0 1 1 1 1
1500 2000 2500 3000

Block erasure
numbers

3500

The number of input pages

Fig. 14. Erasure numbers compared with existingritey
policies

(%]

2 3000 The proposed method

2 —l— The cost-benefit policy

o 2000 F—A—The greedy poli

=

g 1000

(5]

g ——1r—¢—T—¢ ¢

2 0

e 1500 2000 2500 3000 3500

The number of input pages

Fig. 15. Copying numbers compared with existing roleg
policies

merg

Both in random access and high locality access, our

proposed method outperforms the greedy policy aedcbst-
benefit policy.

5. CONCLUSIONS

In this paper, a block-level buffer aware garbagkection
technique which searches the contents of buffeheaturing
the process of merging blocks is presented. Theoaph is
divided into two parts: buffer-aware block merged arictim
block selection. The former focuses on how to mergtfer
blocks with data blocks and log blocks, while tagdr focuses
on how to select victim blocks so as to ensurehthifer hit
ratio not decreased. Our victim block selection rapph is
dynamic, which selects blocks depending on the esuat of
buffer cache and is different from the existingadimg policies.
Compared with the existing garbage collection meshdbe
proposed method reduces the block erase operatimhpage
migration operations when collecting the same arhoofn
garbage.

In the future works, we will make the explicit aysis about
locality probability to make the best performaneween the

buffers hit ratio and the flash block merges cost.

[1]
(2]

(3]

[4]

[5]

[6]

[7]

(8]

REFERENCES

E. Gal and S. Toledo, "Algorithms and Data Strussur
for Flash Memories," ACM Computing Surveys, 2005.
S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S.W. Park
and H.J. Song, "A Log Buffer-based Flash Translation
Layer using Fully-Associative Sector TranslatioACM
Transactions on Embedded Computing Systems, vol. 6,
no.3, 2007.

C. Park, W.M. Cheon, J.G. Kang, K.G. Roh, W.H. Cho,
and J.S. Kim, "A Reconfigurable FTL Architecturer fo
NAND Flash-based Applications," ACM Transactions on
Embedded Computing Systems, vol. 7, no. 4, 2008.

J.U. Kang, H.S. Jo, J.S. Kim, and J.W. Lee, "A Supe
Block-based Flash Translation Layer for NAND Flash
Memory," Proc. International Conference on Embedded
Software, 2006, pp. 161-170.

J. Kang, J.M. Kim, S.H. Noh, S.L. Min and Y. Cho, "A
Space-efficient Flash Translation Layer for Compact
Flash Systems,"” IEEE Transactions on Consumer
Electronics, vol. 48, no.2, 2006, pp. 366-375.

S.Y. Park, D.W. Jung, J.U. Kang, J.S. Kim and l.@é,
"CFLRU: A Replacement Algorithm for Flash Memory,"
International Conference on Compilers, Architecturd a
Synthesis for Embedded Systems, 2006, pp. 234-241.

H. Kim and S.J. Ahn, "BPLRU: A Buffer Management
Scheme for Improving Random Writes in Flash Stofage,
Proceedings of the 6th USENIX Conference on File and
Storage Technologies, 2008.

H. Jo, J.U. Kang, J.S. Kim, and J. Lee, "FAB: Flash-
aware Buffer Management Policy for Portable Media

International Journal of Contents, Vol.6, No.4, Dec 2010

Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

Players," IEEE Transactions on Consumer Electronics,
vol. 52, no.2, 2006, pp. 485-493.

[9] S.W. Lee and B.K. Moon, "Design of Flash-based
DBMS: An In-page Logging Approach,” International
conference on Management of Data, Beijing, China7200
pp. 55-66.

[10] L.P. Chang and T.W. Kuo, "An Efficient Management
Scheme for Large-scale Flash-memory Storage Systems
Symposium on Applied Computing, 2004, pp. 862-868.

[11] K.H. Park and S.H. Lim, "An Efficient NAND FlashI&i
System for Flash Memory Storage," IEEE Transactions
on Computers, vol. 55, 2006, pp. 906-912.

[12] Intel Corporation, "Understanding the Flash Tramstat
Layer (FTL) Specification," White Paper,
http://www.embeddedfreebsd.org/Documents/Intel-
FTL.pdf, 1998.

[13] A. Kawaguchi, S. Nishioka, and H. S. Motoda, "A$Ha
memory based File System,” USENIX Association, 1995
pp. 13-23.

[14] S.Y. Kang, S. M. Park, H. Y. Jung, H. K. Shim, ahd.
Cha, "Performance Trade-Offs in Using NVRAM Write
Buffer for Flash Memory-Based Storage Devices,” IEEE
Computer Society, vol. 58, no. 6, 2009, pp. 744-758.

[15] M. L. Chiang and R. C. Chang, “Cleaning Policies in
Mobile Computers using Flash Memory,” Elsevier
Science Inc, vol. 48, no. 3, 1999, pp. 213-231.

[16] I. Koltsidas and S. D. Viglas, “Flashing up the ratge
Layer,” VLDB Endowment, vol. 1, no. 1, 2008, pp. 514
525.

[17] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A
Design for High-performance Flash Disks,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 27200
pp. 88-93.

[18] S. W. Lee, B. K. Moon, C. N. Park, J. M. Kim and S. W
Kim, “A Case for Flash Memory SSD in Enterprise
Database Applications”, International Conference on
Management of Data, 2008, pp. 1075-1086.

Weonil Chung

He received the B.S., Ph.D. in computer
science and Information Engineering
from Inha University, Korea in 1998,

2004 respectively. Since 2007, he has
been with Hoseo University. His main

research interests include spatial data
stream, and database security.

LiangboLi

He received a B.S. degree in computer
engineering from Chongqing University,

China in 2009. Currently he is taking up
M.S. course in Computer and

Information Engineering at Inha

University. He research interests include
spatial database, POI, and data stream.

International Journal of Contents, Vol.6, No.4, Dec 2010

