
22 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

International Journal of Contents, Vol.6, No.4, Dec 2010

Memory Compaction Scheme with Block-Level Buffer
for Large Flash Memory

Weonil Chung

Dept. of Information Security Engineering
Hoseo University, Asan, Chungcheongnam-Do, Korea

Liangbo Li

Dept. of Computer and Information Engineering
Inha University, Inchoen, Korea

ABSTRACT

In flash memory, many previous garbage collection methods only merge blocks statically and do not consider the contents of buffer.
These schemes may cause more unnecessary block erase operations and page copy operations. However, since flash memory has the
limitation of maximum rate and life cycle to delete each block, an efficient garbage collection method to evenly wear out the flash
memory region is needed. This paper proposes a memory compaction scheme based on block-level buffer for flash memory. The
proposed scheme not only merges the data blocks and the corresponding log block, but also searches for the block-level buffer to find
the corresponding buffer blocks. Consequently, unnecessary potential page copying operations and block erasure operations could
be reduced, thereby improving the performance of flash memory and prolonging the lifetime of flash memory.

Keywords: Flash Memory, Memory Compaction, Garbage Collection, Block-level buffer, FTL.

1. INTRODUCTION∗∗∗∗

As the usage of mobile devices and mobile phones has
rapidly increased, flash memory has been considered as the
next-generation storage systems to replace the hard-disk
because it has some advantages such as faster access speed,
lightweight, low power consumption, small size and shock
resistance. However, since flash memory is characterized by its
erase-before-write operation, it must be erased before new data
is written to a given physical location. Unfortunately, write
operations are performed in unit of sector, while erase
operations are executed in unit of block, usually, a block
consists of many sectors. Besides, flash memory will
accumulate obsolete sectors after lots of updates due to the
erase-before-write characteristic. To make space for new
blocks, obsolete sectors must be reclaimed. The only way to
reclaim a sector is to erase an entire unit, in which this process
is called garbage collection. Moreover, flash memory can be
erased in limited times. Therefore, flash memory requires a
well-designed garbage collection scheme to evenly wear out
the flash memory region [1]-[5].

Some previous work focus on how to design a well FTL
(Flash Translation Layer) and how to reduce write operations
using buffer mechanism [6]-[10]. FTL is the driver that works

∗ Corresponding author, E-mail: wnchung@hoseo.edu
Manuscript received Sep. 17, 2010 ; accepted Dec. 20, 2010

in conjunction with an existing operating system to make linear
flash memory appear to the system like a disk drive. The key
role of FTL is to redirect each write request from the host file
system to an empty area that has been already erased in
advance. The buffer mechanism is also been used in flash
memory to reduce the write requests. Since the erase-before-
write characteristic of flash memory, frequent updates will
make the performance of flash memory decrease. Write buffer
cache could gather these frequent updates and make them to
one write request. Therefore, buffer mechanism reduces the
write operations to flash memory.

Among the previous works [11]-[14], the garbage collection
is done only considered the contents of flash memory. Merging
the data block and log block is to copy valid pages in them to a
new block. However, when the contents in buffer are flushed to
flash memory, the pages in new block produced by garbage
collection are possible to become invalid. Under this situation,
flash memory needs more pages copy operations and block
erase operations in next garbage collection process. Actually, it
can be avoided by making a well garbage collection scheme.

In this paper, we propose a novel garbage collection method
called block-level buffer garbage collection. When FTL needs
to merge blocks during the garbage collection process, it will
refer to the contents of buffer. By examining the contents of
buffer, FTL copies the best corresponding buffer blocks to
flash memory or selects another appropriate block as victim
block to improve the performance of flash-based storage

DOI:10.5392/IJoC.2010.6.4.022

 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 23

International Journal of Contents, Vol.6, No.4, Dec 2010

system. In shortly, the proposed method is divided into two
parts: how to merge blocks based on block-level buffer and
how to select a log block as victim block. We focus on these
two issues in this paper. First, our novel garbage collection
method merges block with three kinds of blocks: log blocks,
data blocks and buffer blocks. Second, our victim block
selection method selects a log block as victim block through
searching the contents of buffer. The proposed method can
reduce unnecessary potential page copying numbers and
unnecessary potential block erasure numbers.

2. RELATED WORKS

2.1 Flash Memory

Flash memory is a type of nonvolatile, electrically erasable
programmable read-only memory. In this paper, our proposed
method mainly focuses on NAND flash memory.

NAND flash memory consists of blocks, each of which
consists of pages [7]. There are three basic operations for a
NAND flash memory: read, write and erase. Read and write
operations are performed on a page basis, while an erase
operation is executed on a block basis. There are a few
drawbacks as follows: 1) No in-place-update: The memory
must be erased before new data can be written. The worse
problem is that the erase operation is performed block by block,
while the write operation is performed page by page. 2)
Asymmetric operation costs: For flash memory, read operations
are faster than write operations. In addition, as a write
operation may accompany an erase operation, the write
operational latency becomes even longer. 3) Uneven wear-out:
The number of erasures on each block is limited, to 100,000 or
1,000,000 times. Once the number is reached, the block cannot
be used any more.

Therefore, the number of write and erase operations should
be minimized not only to improve the overall performance but
also to maximize the lifetime of NAND flash memory.

2.2 Flash Translation Layer (FTL)

FTL is a translation layer between the native file system and
flash memory [10]. The main role of FTL is to emulate the
functionality of block device with flash memory. It emulates a
hard disk, and provides logical sector updates. FTL achieves
this by redirecting each write request form file system to an
empty location in flash memory that has been erased in
advance, and by maintaining an internal mapping table to
record the mapping information from logical sector number to
physical location. Besides the address translation from logical
sectors to physical sectors, FTL carries out several other
important functionalities, such as guaranteeing data consistency
and reclaiming the discarded data blocks for reuse.

The mapping between the logical address and the physical
address can be managed at sector, block, or hybrid level.
Therefore, the mapping scheme is categorized with sector-level
mapping, block-level mapping, and hybrid mapping [6],[8],[9].
When free log blocks are not sufficient, the merge operation
called garbage collection will happen. Since any log block is
associated with data blocks, merge operation is to copy valid
data from log block and data blocks to new free block. While

executing the merge operation, multiple page copy operations
and erase operations are invoked. Therefore, merge operations
seriously degrade the performance of flash memory because of
extra operations.

Generally, large sequential write operations can induce
switch merge operations, while random write operations induce
full merge operations. Therefore, if random write operations
occur frequently, the performance of the flash memory system
decreases.

2.3 Flash Buffer Cache

To decrease the number of extra operations, the write buffer
management scheme is required to 1) decrease the number of
merge operations by clustering pages in the same block and
evicting them at the same time, 2) evict pages such that the
FTL may invoke switch merge or partial merge operations
which show relatively low cost rather than the full merge
operation, which is expensive, and 3) detect sequential page
writes and evict those sequential pages preferentially and
simultaneously [2], [3], [15].

The buffer can manage data in page-level management
buffer and block-level management buffer. In page-level
scheme, pages are evicted to flash memory page by page.
When buffer pages are managed in a block-level scheme, pages
are clustered by corresponding block number in the flash
memory. Block-level buffer management policy not only
invokes relatively fewer merge operations than page-level
buffer management policy but also invokes switch merge or
partial merge rather than full merge for merge operation.
Block-level buffer management policy shows better overall
performance than the page-level buffer management policy
[12], [16]-[18].

2.4 Cleaning Policies

Cleaning policies determine when to clean, which blocks to
clean, and where to write data in order to minimize cleaning
cost. The cleaning cost includes erasure cost and the migration
cost for copying valid data into other blocks. In this paper, we
measure the quality of cleaning policy by block erasure
numbers and page copying numbers with previous works such
as greedy policy, cost-benefit policy [11], and cost age times
policy [13]. Greedy policy considers only cleaning cost.

Greedy policy always selects blocks with the largest amount
of garbage for cleaning, hoping to reclaim as much space as
possible with the least cleaning work. Cost-benefit policy [14]
chooses to clean blocks that maximize the formula:
(benefit/cost) = (age*(1-u))/2u, where u is the block utilization
and (1-u) is the amount of free space reclaimed. The age is the
time since the most recent modification (i.e., the last block
invalidation) and is used as an estimate of how long the space
is likely to stay free. The cost of cleaning a block is 2u that one
u is to read valid pages and the other u is to write them back.
Cost Age Times (CAT) policy [16] chooses to clean blocks that
minimize the formula: (CleaingCost)*Age-1*(number of
Cleaning). The Cleaning Cost is defined as the cleaning cost of
every useful write to flash memory as u/(1-u), where u is the
percentage of valid data in a block. Every (1-u) write incurs the
cleaning cost of writing out u valid data. The Age is defined as
the elapsed time since the block was created. The Number of

24 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

International Journal of Contents, Vol.6, No.4, Dec 2010

Cleaning is defined as the number of times a block has been
erased.

 In comparison, Cost-benefit policy considers cleaning cost
and age of data. And cost age times policy considers cleaning
cost, age of the data, and number of cleaning. But all the above
cleaning policies focus on selecting a victim block statically in
flash memory. The proposed method is different from them,
since we not only consider the static state of flash memory, but
also consider the dynamic state of buffer cache.

3. BLOCK-LEVEL BUFFER AWARE MERGE

3.1 Buffer-aware Block Merge

In order to prevent potential unnecessary page migrations,
the proposed method refers to the contents of buffer during the
block merging process. There is trade-off between merge
performance and the buffer hit ratio. First, move up-to-date
blocks in the buffer into new allocated data blocks can improve
the merge performance. Second, if the corresponding blocks
will not be evicted to flash memory in the near future, they will
be updated frequently. It causes that moving these blocks into
flash memory will make the buffer hit ratio decreased. In this
case, it is beneficial to choose another log block as victim log
block. Therefore, the issue can be viewed as how to merge
blocks and how to select victim log block.

As mentioned before, the cleaning policy determined when
to clean, which blocks to clean and where data to write. In this
paper, we do not discuss the issue of when to clean, since the
cleaning can start when the number of free blocks becomes
lower than a threshold. However, we will set a threshold to test
the proposed method in our experiments. If no more empty
sectors exist in the log blocks, the proposed garbage collection
approach chooses one of the log blocks as victim and merges
the victim block with its corresponding data blocks and its
corresponding buffer blocks.

The merge operation proceeds as follows: First, given a log
block as victim block, find the corresponding data blocks and
allocate the same amount of free blocks. Before processing the
merge operation, it is necessary to determine the log block that
will serve as the merge target. Three existing cleaning policies
which selected a victim log block according to different
features are described. In this paper, we will present a new log
block selection method which is distinct from the existing
cleaning policies. In hybrid mapping scheme of FTL, there is a
block-level mapping table addition to a page-level mapping
table, in which the page-level mapping table contains the
separate page mapping information between log blocks and the
corresponding data blocks. Therefore, we can obtain the
corresponding data blocks when given a log block through
searching the page-level mapping table. Second, search the
buffer to find whether the blocks which have the same number
to the corresponding data blocks exist or not. In block-level
buffer, data are organized in unit of block. Each block has a
unique number called logical address which is identical to the
logical number of data blocks in flash memory. Therefore, it is
easy to find the corresponding buffer blocks when we obtained
the corresponding data blocks. Third, flush the sectors in buffer
blocks to free blocks, and copy the most up-to-data version

from the log blocks to free blocks, then fills each empty sector
in the free block with its corresponding sector in the data
blocks. Fourth, erase the log block and corresponding data
blocks.

Fig. 1. Merge blocks refer to contents of buffer

Fig. 1 is the typical process of our proposed block-level
buffer aware merge method. In this fig., B0 and B1 are data
blocks, L0 and L1 are log blocks. To log block L0, data blocks
B0 and B1 are its corresponding data blocks, block 1 in the
buffer is its corresponding buffer block.

When log block L0 is selected as victim block, we find that
B0 and B1 are its corresponding data blocks and there also
exists corresponding buffer block 1 in the buffer, and then we
allocate two new blocks N0 and N1 from free blocks. Next,
sector 5 and 6 in buffer are first flushed into new blocks, then
copy sector 0, 1 and 7 in log block to new blocks, finally fill
the empty sectors using sector 2, 3 and 4 in data blocks. After
merge all the blocks, erase log block L0 and data blocks B0 and
B1.

3.2 Victim Block Selection

In step two of searching the buffer in the proposed approach,
there may cause three situations according whether the blocks
which have the same number to corresponding data blocks in
buffer is found or not.

In case of not found, the garbage collection only needs to
merge the log block and its corresponding data blocks. This
process is done like the buffer-unaware merge operation. Fig. 2
shows the relationship between buffer and the flash memory.

In case of found and the found blocks belong to the least
recently used blocks, if the blocks locate at the near end of the
buffer list, this means these blocks will be flushed to flash
memory in the shortly future. It is appropriate to move these
sectors in the buffer into the new free blocks. Our proposed

 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 25

International Journal of Contents, Vol.6, No.4, Dec 2010

method is suitable for this situation. Fig. 3 shows the
relationship between buffer and the flash memory.

Fig. 2. No corresponding blocks in buffer

Fig. 3. Corresponding blocks locate at the near end of the

buffer

In case of found but the found blocks are hot blocks, the
blocks locate at the near start of the buffer list, which means
these sectors in the found blocks will be updated frequently. If
we choose these blocks to flush to flash memory, the buffer hit
ratio will decrease. Therefore, it is beneficial to find another
log block as victim log block. Fig. 4 shows the relationship
between buffer and the flash memory.

Fig. 4. Corresponding blocks locate at the near start of the

buffer

Through our analysis, whether or not evicting a
corresponding buffer block to flash memory depends on the
block position where blocks reside in the buffer. Hot blocks are
these which locate at the near start of the buffer, while clod
blocks are those which locate at the near end of the buffer.
Since hot blocks are accessed frequently, we should avoid evict
hot blocks in advance. Otherwise, the buffer hit ratio will
decrease. To address this issue, the buffer needs a threshold
line to divide which to hot block area and cold block area. Only
blocks which reside in clod block area could be flushed to flash
memory. Fig. 5 shows the position of hot blocks and cold
blocks in buffer cache.

Fig. 5. The position of hot blocks and cold blocks

Here we use a novel concept named locality probability to

judge the importance of the blocks in the buffer. The idea of
locality probability is described as follows:

We assume the current number of blocks in buffer is n, the
basic locality probability of the block which reside in the end of
the buffer list is p, which is the lowest value, the difference
value between two blocks is x, this means the locality
probability of the front block is larger than its back block, and
their difference value is x, the total sum of all block locality
probability is 1. So we get:

26 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

International Journal of Contents, Vol.6, No.4, Dec 2010

If we set the difference value x a specific value, according to
the number n, we can calculate the basic locality probability p
and the locality probability of every block. In the real world, set
a threshold of the locality probability depending on specific
devices. The blocks whose locality probability larger than the
threshold considered as hot blocks, and less than the threshold
considered as least recently used blocks.

The buffer space is partitioned into two areas by the
threshold line. Usually, the hot block area holds a small part of
the buffer, while the cold block area holds most of the buffer.
We use a partition parameter α (0 1α≤ ≤) to divide the buffer.
The partition parameter is defined as the ratio of hot blocks to
total buffer blocks. If α = 0.1, then 10 percent of the total
number of blocks in the buffer are hot blocks and the remaining
90 percent of the blocks are cold blocks. This measure is a
variant of locality probability. According to the definition of
locality probability, we could calculate the locality probability
of every block. For example, n = 10, set x = 0.01, we get the
basic locality probability p = 0.055 according to Eq. 1. In turn,
we could calculate every block’s locality probability, from the
top of buffer to the end, 0.145, 0.135, 0.125, 0.115, 0.105,
0.095, 0.085, 0.075, 0.065 and 0.055. If the threshold value is
0.130, 20 percent of the total number of blocks art hot blocks
and 80 percent of the blocks are cold blocks. For the buffer
management policies which manage blocks with hot and cold
blocks, we need not divide the buffer to two partitions. For
example, using Cold and CLC(Largest Cluster Policy) [15] to
manage buffer, our proposed method only need to treat the
size-independent LRU cluster list as hot block area and size-
dependent LRU cluster list as cold block area. In this paper, we
use the parameter α to describe the hot block area and cold
block area since it is convenient to implement. Our experiments
treat the buffer for the general purpose and use LRU policy to
manage the buffer.

 In the section of existing cleaning policies, we listed several
cleaning policies: greedy policy, cost-benefit policy and Cost
Age Times (CAT) policy. In garbage collection process, a main
task is to choose a block as victim block among lots of used
blocks. Through calculating under different cleaning policies,
used blocks are listed in a queue. The block with the highest
satisfied condition will be selected as victim block. Used
blocks are selected one by one in the queue.

In our proposed method, based on the used block queue, we
will check whether or not a used block can be selected as
victim block in Fig. 6.

Fig. 6. The process of selecting victim log block

For simplicity, we use LRU policy to manage the log blocks
instead of the existing cleaning policies in this paper. That
means log blocks are managed in a queue under LRU policy,
the least recently used log block is first selected as a candidate
victim block. Then check the corresponding buffer blocks of
this log block, if the corresponding buffer blocks do not reside
in the hot block area, this log block is selected as victim block.
If the corresponding buffer blocks reside in the hot block, move
this log block to the MRU position of the queue and select next
log block as candidate victim block.

In the process of checking the corresponding buffer blocks,
we will check whether or not the corresponding buffer blocks
locate at the hot block area. If the corresponding buffer blocks
do not locate at the hot block area, it may locate at the cold
block area or it may do not appear at the buffer cache.
According to this, we will make the correct decision that
merging blocks with buffer blocks or not. Therefore, our
proposed method comes. Fig. 7 shows the details of the
processing.

Fig. 7. The whole process of the proposed method

Above all, our victim block selection depends on the current

contents in the buffer cache, which is dynamic and different
from the others cleaning policies.

4. PERFORMANCE EVALUATIONS

4.1 Experimental Environment

As analyzed before, the main advantage of proposed method
is to reduce the potential unnecessary page migration costs and
block erase costs. In other words, during the process of garbage
collection, our approach can improve flash wear-leveling
performance and prolong the lifetime of flash memory by
reducing unnecessary page copy costs and block erase costs.

The experiments of proposed method will generate the block
erasure numbers and page copying numbers, so we get this
information as the results to measure the experimental
performance. We assume that every block consists of 4 pages,
the flash memory has 100 blocks, and the log block group has

 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 27

International Journal of Contents, Vol.6, No.4, Dec 2010

10 log blocks, the buffer can maintain 10 blocks when it is full.
The system considers the number of pages as input. With
different input page numbers, different garbage collection
scheme will produce different block erasure numbers and page
copying numbers. The fewer numbers produced, the better that
scheme is. The simulation environment is shown in Table 1.

Table 1. Experimental Environments

Item Configuration
Computer PC

CPU Intel Core2 Duo 2Ghz
Main Memory 2 GB

HDD 500GB
OS Microsoft Windows XP

Language MS Visual C++ 2005

4.2 Experimental Results
We divide the experimental results as two parts according to

the access mode of random access and high locality access.
High locality access means that accessing more frequently and
more intensively concentrate at a specific area of flash memory.
Because the cost-benefit cleaning policy and CAT cleaning
policy is similar besides the number of cleaning characteristic,
we only compare our proposed method with the greedy
cleaning policy and the cost-benefit cleaning policy.

4.2.1 Performance of random access
First we compare the performance of buffer-aware merge

and buffer-unaware merge. Buffer-aware merge is our
proposed scheme and buffer-unaware merge is the traditional
merge operation which does not refer to the contents of buffer.

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 3000

The number of input pages

Bl
o
ck

e
ra

s
ur

e
 n

u
m
be

r
s Buffer-aware merge

Buffer-unaware merge

Fig. 8. Block erasure numbers

0

2000

4000

6000

8000

10000

12000

500 1000 1500 2000 2500 3000

The number of input pages

P
a
g
e

c
o
p
y
i
n
g

n
u
m
b
e
r
s Buffer-aware merge

Buffer-unaware merge

Fig. 9. Page copying numbers

In Fig. 8, the x-axis denotes the random input page numbers

for write to flash memory and the y-axis represents the block

erasure numbers when collecting garbage. In Fig. 9, the x-axis
denotes the same meaning to Fig. 8 and the y-axis represents
the page copying numbers when collecting garbage.

From these two figures, we find that buffer-aware merge
scheme can save more block erasure numbers and page copying
numbers than buffer-unaware merge scheme.

0
500

1000
1500
2000
2500
3000
3500

500 1000 1500 2000 2500 3000

The number of input pages

B
lo

ck
 e

ra
su

re
 n

u
m

b
er

s

The proposed method
The cost-benefit policy
The greedy policy

Fig. 10. Erasure numbers of comparing with existing cleaning

policies

0
2000
4000
6000
8000

10000
12000
14000

500 1000 1500 2000 2500 3000

The number of input pages

P
ag

e
co

p
yi

n
g

 n
u

m
b

er
s

The proposed method
The cost-benefit policy
The greedy policy

Fig. 11. Copying numbers of comparing with existing cleaning

policies

Next, we compare our proposed scheme with the existing
cleaning policies. Fig. 10 and 11 shows the results of block
erasure numbers and page copying numbers respectively. In Fig.
10 and 11, the line marked star denotes the greedy policy, the
line marked triangle denotes the cost-benefit policy and the line
marked rectangle represents our proposed method.

In random access mode, the cost-benefit cleaning policy is
better than the greedy cleaning policy, because the cost-benefit
policy not only considers the block utilization but also
considers the age of blocks. Our proposed method outperforms
the two policies, since we consider the dynamic contents of
buffer.

4.2.2 Performance of high locality access
The case of high locality access is different from random

access. Fig. 12 and 13 show the compared results of buffer-
aware merge scheme and buffer-unaware merge scheme.

Compared to random access, buffer-aware merge scheme
can reduce more block erasure numbers and page copying
numbers than buffer-unaware merge scheme in high locality
access mode. This is because in high locality access mode, data
are concentrated and buffered in buffer cache. Through
checking the contents of buffer cache in advance, many
unnecessary block erase operations and page copy operations

28 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

International Journal of Contents, Vol.6, No.4, Dec 2010

can be avoided. Therefore, the performance can be improved
more than in random access.

In Fig. 13, the page-copying numbers is reduced much more
than block-erasure numbers in Fig. 12. The reason is that high
locality access causes blocks with full obsolete pages much
more than partial obsolete pages. Therefore, switch merge
operations is performed much more than partial merge
operations and full merge operations. In switch merge, only
block erase operations are necessary.

0

100

200

300

400

500

600

1500 2000 2500 3000 3500

The number of input pages

B
l
o
c
k

e
r
a
s
u
r
e

n
u
m
b
e
r
s

Buffer-aware merge
Buffer-unaware merge

Fig. 12. Erasure numbers of high locality

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1500 2000 2500 3000 3500

The number of input pages

P
a
g
e

c
o
p
y
i
n
g

n
u
m
b
e
r
s Buffer-aware merge

Buffer-unaware merge

Fig. 13. Copying numbers of high locality

Finally, we compared the performance of high locality
access with the existing cleaning policies.

0

200

400

600

800

1500 2000 2500 3000 3500

The number of input pages

B
lo

ck
 e

ra
su

re
n

u
m

b
e

rs

The proposed method
The cost-benefit policy
The greedy policy

Fig. 14. Erasure numbers compared with existing cleaning

policies

0

1000

2000

3000

1500 2000 2500 3000 3500

The number of input pages

P
a

g
e

 c
op

yi
n

g
 n

u
m

b
e

rs

The proposed method
The cost-benefit policy
The greedy policy

Fig. 15. Copying numbers compared with existing cleaning

policies

Both in random access and high locality access, our
proposed method outperforms the greedy policy and the cost-
benefit policy.

5．．．．CONCLUSIONS

In this paper, a block-level buffer aware garbage collection
technique which searches the contents of buffer cache during
the process of merging blocks is presented. The approach is
divided into two parts: buffer-aware block merge and victim
block selection. The former focuses on how to merge buffer
blocks with data blocks and log blocks, while the latter focuses
on how to select victim blocks so as to ensure the buffer hit
ratio not decreased. Our victim block selection approach is
dynamic, which selects blocks depending on the contents of
buffer cache and is different from the existing cleaning policies.
Compared with the existing garbage collection methods, the
proposed method reduces the block erase operations and page
migration operations when collecting the same amount of
garbage.

In the future works, we will make the explicit analysis about
locality probability to make the best performance between the
buffers hit ratio and the flash block merges cost.

REFERENCES

[1] E. Gal and S. Toledo, "Algorithms and Data Structures
for Flash Memories," ACM Computing Surveys, 2005.

[2] S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S.W. Park,
and H.J. Song, "A Log Buffer-based Flash Translation
Layer using Fully-Associative Sector Translation," ACM
Transactions on Embedded Computing Systems, vol. 6,
no.3, 2007.

[3] C. Park, W.M. Cheon, J.G. Kang, K.G. Roh, W.H. Cho,
and J.S. Kim, "A Reconfigurable FTL Architecture for
NAND Flash-based Applications," ACM Transactions on
Embedded Computing Systems, vol. 7, no. 4, 2008.

[4] J.U. Kang, H.S. Jo, J.S. Kim, and J.W. Lee, "A Super
Block-based Flash Translation Layer for NAND Flash
Memory," Proc. International Conference on Embedded
Software, 2006, pp. 161-170.

[5] J. Kang, J.M. Kim, S.H. Noh, S.L. Min and Y. Cho, "A
Space-efficient Flash Translation Layer for Compact
Flash Systems," IEEE Transactions on Consumer
Electronics, vol. 48, no.2, 2006, pp. 366-375.

[6] S.Y. Park, D.W. Jung, J.U. Kang, J.S. Kim and J.W. Lee,
"CFLRU: A Replacement Algorithm for Flash Memory,"
International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, 2006, pp. 234-241.

[7] H. Kim and S.J. Ahn, "BPLRU: A Buffer Management
Scheme for Improving Random Writes in Flash Storage,"
Proceedings of the 6th USENIX Conference on File and
Storage Technologies, 2008.

[8] H. Jo, J.U. Kang, J.S. Kim, and J. Lee, "FAB: Flash-
aware Buffer Management Policy for Portable Media

 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 29

International Journal of Contents, Vol.6, No.4, Dec 2010

Players," IEEE Transactions on Consumer Electronics,
vol. 52, no.2, 2006, pp. 485-493.

[9] S.W. Lee and B.K. Moon, "Design of Flash-based
DBMS: An In-page Logging Approach," International
conference on Management of Data, Beijing, China, 2007,
pp. 55-66.

[10] L.P. Chang and T.W. Kuo, "An Efficient Management
Scheme for Large-scale Flash-memory Storage Systems,"
Symposium on Applied Computing, 2004, pp. 862-868.

[11] K.H. Park and S.H. Lim, "An Efficient NAND Flash File
System for Flash Memory Storage," IEEE Transactions
on Computers, vol. 55, 2006, pp. 906-912.

[12] Intel Corporation, "Understanding the Flash Translation
Layer (FTL) Specification," White Paper,
http://www.embeddedfreebsd.org/Documents/Intel-
FTL.pdf, 1998.

[13] A. Kawaguchi, S. Nishioka, and H. S. Motoda, ”A Flash-
memory based File System,” USENIX Association, 1995,
pp. 13-23.

[14] S. Y. Kang, S. M. Park, H. Y. Jung, H. K. Shim, and J. Y.
Cha, ”Performance Trade-Offs in Using NVRAM Write
Buffer for Flash Memory-Based Storage Devices,” IEEE
Computer Society, vol. 58, no. 6, 2009, pp. 744-758.

[15] M. L. Chiang and R. C. Chang, “Cleaning Policies in
Mobile Computers using Flash Memory,” Elsevier
Science Inc, vol. 48, no. 3, 1999, pp. 213-231.

[16] I. Koltsidas and S. D. Viglas, “Flashing up the Storage
Layer,” VLDB Endowment, vol. 1, no. 1, 2008, pp. 514-
525.

[17] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A
Design for High-performance Flash Disks,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 2, 2007,
pp. 88-93.

[18] S. W. Lee, B. K. Moon, C. N. Park, J. M. Kim and S. W.
Kim, “A Case for Flash Memory SSD in Enterprise
Database Applications”, International Conference on
Management of Data, 2008, pp. 1075-1086.

Weonil Chung
He received the B.S., Ph.D. in computer
science and Information Engineering
from Inha University, Korea in 1998,
2004 respectively. Since 2007, he has
been with Hoseo University. His main
research interests include spatial data
stream, and database security.

Liangbo Li
He received a B.S. degree in computer
engineering from Chongqing University,
China in 2009. Currently he is taking up
M.S. course in Computer and
Information Engineering at Inha
University. He research interests include
spatial database, POI, and data stream.

