DOI QR코드

DOI QR Code

SLA Homozygous Korean Native Pigs and Their Inbreeding Status Deduced from the Microsatellite Marker Analysis

  • Jung, Woo-Young (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Lim, Hyun-Tae (Division of Animal Science, College of Agriculture, Gyeongsang National University) ;
  • Lim, Jae-Sam (Livestock Technology Research Institute) ;
  • Kim, Sung-Bok (Livestock Technology Research Institute) ;
  • Jeon, Jin-Tae (Division of Animal Science, College of Agriculture, Gyeongsang National University) ;
  • Lee, Jun-Heon (Department of Animal Science and Biotechnology, Chungnam National University)
  • Received : 2010.08.05
  • Accepted : 2010.11.26
  • Published : 2010.12.31

Abstract

The porcine MHC (Major Histocompatibility Complex), encoding the SLA (Swine Leukocyte Antigen) genes, is one of the most significant regions associated with immune rejection in relation to transplantation. In this study, three SLA class I (SLA-1, SLA-3, SLA-2) loci and three SLA class II (DRB1, DQB1, DQA) loci were investigated in the previously unidentified Korean native pig (KNP) population that was closely inbred in the Livestock Technology Research Station in Cheongyang, Korea. Total thirteen KNPs from four generations were genotyped for the SLA alleles and haplotypes were investigated using PCR-SSP (Sequence-Specific Primer) method. The results showed that all of these KNPs had Lr-56.30/56.30 homozygous haplotype, indicating high level of inbreeding in the SLA genes. The inbreeding status of these animals was also investigated using microsatellite (MS) markers. From the 50 MS markers investigated, 17 MS markers were fixed in all generations and the fixed alleles are increased as 26 loci for the fourth generation. Two MS markers, S0069 and SW173, were heterozygous for all the animals tested. Observed and expected heterozygosities were calculated and the average inbreeding coefficients for each generation were also calculated. In the fourth generation, the average inbreeding coefficients was 0.732 and this may increase with further inbreeding process. Analysis of the SLA haplotypes and MS alleles can give important information for breeding the pigs for xenotransplantation studies.

Keywords

References

  1. Ando, A., Ota, M., Sada, M., Katsuyama, Y., Goto, R., Shigenari, A., Kawata, H., Anzai, T., Iwanaga, T., Miyoshi, Y., Fujimura, N. and Inoko, H. 2005. Rapid assignment of the swine major histocompatibility complex (SLA) class I and II genotypes in Clawn miniature swine using PCR-SSP and PCR-RFLP methods. Xenotransplantation 12:121-126. https://doi.org/10.1111/j.1399-3089.2005.00204.x
  2. Cho, H. O., Ho, C. S., Lee, Y. J., Cho, I. C., Lee, S. S., Ko, M. S., Park, C., Smith, D. M., Jeon, J. T. and Lee, J. H. 2010. Establishment of a resource population of SLA haplotypedefined Korean native pigs. Molecules and Cells 29:493-499. https://doi.org/10.1007/s10059-010-0061-8
  3. Gautschi, C. and Gaillard, C. 1990. Influence of major histocompatibility complex on reproduction and production traits in swine. Animal Genetics 21:161-170. https://doi.org/10.1111/j.1365-2052.1990.tb03221.x
  4. Ho, C. S., Lunney, J. K., Ando, A., Rogel-Gaillard, C., Lee, J. H., Schook, L. and Smith, D. M. 2009a. Nomenclature for factors of the SLA system, update 2008. Tissue Antigens 73:307-315. https://doi.org/10.1111/j.1399-0039.2009.01213.x
  5. Ho, C. S., Lunney, J. K., Franzo-Romain, M. H., Martens, G. W., Lee, Y, J., Lee, J. H., Wysoki, M., Rowland, R. R. R. and Smith, D. M. 2009b. Molecular characterization of swine leukocyte antigen class I genes in outbred pig populations. Animal Genetics 40:468-478. https://doi.org/10.1111/j.1365-2052.2009.01860.x
  6. Ho, C. S., Lunney, J. K., Lee, J. H., Franzo-Romain, M. H., Martens, G. W., Rowland, R. R. R. and Smith, D. M. 2010a. Molecular characterization of swine leukocyte antigen (SLA) class II genes in outbred pig populations. Animal Genetics 41:428-432.
  7. Lunney, J. K. and Murrell, K. D. 1988. Immunogenetic analysis of Trichinella spiralis infections in swine. Veterinary Parasitology 29:179-193. https://doi.org/10.1016/0304-4017(88)90125-2
  8. Lee, J. H., Simond, D., Hawthorne, W. J., Walters, S. N., Patel, A. T., Smith, D. M., O’Connell, P. J. and Moran, C. 2005. Characterization of the swine major histocompatibility complex alleles at eight loci in Westran pigs. Xenotransplantation 12: 303-307. https://doi.org/10.1111/j.1399-3089.2005.00231.x
  9. Mallard, B. A., Wilkie, B. N. and Kennedy, B. W. 1989. Genetic and other effects on antibody and cell mediated immune response in swine leukocyte antigen (SLA)-defined miniature pigs. Animal Genetics 20:167-178. https://doi.org/10.1111/j.1365-2052.1989.tb00854.x
  10. Martens, G. W., Lunney, J. K., Baker, J. E. and Smith, D. M. 2003. Rapid assignment of swine leukocyte antigen haplotypes in pedigreed herds using a polymerase chain reaction-based assay. Immunogenetics 55:395-401. https://doi.org/10.1007/s00251-003-0596-3
  11. Naziruddin, B., Durriya, S., Phelan, D., Duffy, B. F., Olack, B., Smith, D., Howard, T. and Mohanakumar, T. 1998. HLA antibodies present in the sera of sensitized patients awaiting renal transplant are also reactive to swine leukocyte antigens. Transplantation 66:1074-1080. https://doi.org/10.1097/00007890-199810270-00018
  12. Remard, C. and Vaiman, M. 1989. Possible relationships between SLA and porcine reproduction. Reprodution, Nutrition, Development 29:569-76. https://doi.org/10.1051/rnd:19890506
  13. Sachs, D. H., Leight, G., Cone, J., Schwarz, S., Stuart, L. and Rosenberg, S. 1976. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation 22:559-567. https://doi.org/10.1097/00007890-197612000-00004
  14. Shishido, S., Naziruddin, B., Howard, T. and Mohanakumar, T. 1997. Recognition of porcine major histocompatibility complex class I antigens by human CD8+ cytolytic T cell clones. Transplantation 64:340-346. https://doi.org/10.1097/00007890-199707270-00028
  15. Smith, D. M., Lunney, J. K., Ho, C. S., Martens, G. W., Ando, A., Lee, J. H., Schook, L., Renard, C. and Chardon, P. 2005a. Nomenclature for factors of the swine leukocyte antigen class II system, 2005. Tissue Antigens 66:623-639. https://doi.org/10.1111/j.1399-0039.2005.00492.x
  16. Smith, D. M., Lunney, J. K., Martens, G. W., Ando, A., Lee, J. H., Ho, C. S., Schook, L., Renard, C. and Chardon, P. 2005b. Nomenclature for factors of the SLA class-I system, 2004. Tissue Antigens 65:136-149. https://doi.org/10.1111/j.1399-0039.2005.00337.x
  17. Seo, O. K., Ohba, Y., Imaeda, N., Nishii, N., Takasu, M., Yoshioka, G., Kawata, H., Shigenari, A., Uenishi, H., Inoko, H., Ando, A. and Kitagawa, H. 2008. Assignment of the SLA alleles and reproductive potential of selective breeding Duroc pig lines. Xenotransplantation 15:390-397. https://doi.org/10.1111/j.1399-3089.2008.00499.x
  18. Xu, X. C., Naziruddin, B., Sasaki, H., Smith, D. M. and Mohanakumar, T. 1999. Allele-specific and peptide-dependent recognition of swine leukocyte antigen class I by human cytotoxic T-cell clones. Transplantation 68:473-479. https://doi.org/10.1097/00007890-199908270-00005
  19. Yamada, K., Sachs, D. H. and Dersimonian, H. 1995. Human antiporcine xenogeneic T cell response. Evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. Journal of Immunology 155: 5249-5256.