DOI QR코드

DOI QR Code

Non-parametric Background Generation based on MRF Framework

MRF 프레임워크 기반 비모수적 배경 생성

  • 조상현 (가톨릭대학교 컴퓨터공학과) ;
  • 강행봉 (가톨릭대학교 디지털 미디어학부)
  • Received : 2010.09.02
  • Accepted : 2010.10.25
  • Published : 2010.12.31

Abstract

Previous background generation techniques showed bad performance in complex environments since they used only temporal contexts. To overcome this problem, in this paper, we propose a new background generation method which incorporates spatial as well as temporal contexts of the image. This enabled us to obtain 'clean' background image with no moving objects. In our proposed method, first we divided the sampled frame into m*n blocks in the video sequence and classified each block as either static or non-static. For blocks which are classified as non-static, we used MRF framework to model them in temporal and spatial contexts. MRF framework provides a convenient and consistent way of modeling context-dependent entities such as image pixels and correlated features. Experimental results show that our proposed method is more efficient than the traditional one.

기존의 배경 생성방법은 주로 시간에 따른 context만을 이용해 복잡한 환경에서는 적용하기 힘들다. 이러한 단점을 해결하기 위해, 본 논문에서는 움직이는 물체를 포함하지 않는 배경 영상을 생성하기 위해 시간에 따른 context와 공간에 따른 context를 융합한 새로운 배경 생성 방법을 제안한다. 제안한 방법은 먼저 샘플링된 프레임 이미지를 m*n의 블록으로 나누고 각각의 블록을 고정 블록과 비고정 블록으로 나눈다. 비고정 블록에 대해서, 각 블록의 시간적 context와 공간적 context를 모델링하기 위해 MRF 프레임워크를 이용한다. MRF 프레임워크는 영상 픽셀과 연관된 특징과 같은 context에 독립된 entity를 모델링하는데 많이 이용되는 방법으로 본 논문에서는 비고정 블록에 대한 시간적 context와 공간적 context를 모델링하기 위해 이용된다. 실험결과는 제안한 방법이 기존의 시간에 따른 context만을 이용했을 경우보다 더 효율적임을 보여준다.

Keywords

References

  1. C. R. Wren, A. Azarbayejani, T. Darrell, A. P. Pentland,“Pfinder: Real-time tracking of the human body”, IEEETransactions on Pattern Analysis and Machine Intelligence19 (7) (1998) 780-785. https://doi.org/10.1109/34.598236
  2. C. Stauffer, W. Grimson, “Adaptive background mixturemodels for real-time tracking”, in: IEEE Conference onComputer Vision and Pattern Recognition, Fort Collins, USA,1999, pp.246-252.
  3. S. Rowe, A. Blake, “Statistical background modelling fortracking with a virtual camera”, in: British Machine VisionConference, Birmingham, UK, 1995, pp.423-432.
  4. C. Stauffer, W. E. L. Grimson, “Learning patterns of activityusing real-time tracking”, IEEE Transactions on PatternAnalysis and Machine Intelligence 22 (8) (2000) 747-757. https://doi.org/10.1109/34.868677
  5. K. Toyama, J. Krumm, B. Brumitt, and B. Meyers,“Wallflower: Principles and Practice of BackgroundMaintenance,” IEEE Proc. Int'l Conf. Computer Vision, 1999.
  6. I. Haritaoglu, D. Harwoodand, L. S. Davis, “W4: real-timesurveillance of people and their activities”, IEEETransactions on Pattern Analysis and Machine Intelligence22 (8) (2000) 809-830. https://doi.org/10.1109/34.868683
  7. A. Elgammal, D. Harwood, L. Davis, “Non-parametric modelfor background subtraction”, in: European Conference onComputer Vision, Dublin, Ireland, 2000, pp.751-767.
  8. Yazhou Liu, Hongxun Yao, Wen Gao, Xilin Chen, Debin Zhao,“Nonparametric Background Generation”, ICPR 2006.
  9. Sidibe D. D., Strauss O., Puech W, “Automatic BackgroundGeneration from a Sequence of Images Based on RobustMode Estimation”, Proc. SPIE 7250 SPIE-IS&T ElectronicImaging, Digital Photography V, 2009.
  10. Y. Zhou, Y. Gong, and H. Tao, “Background segmentationusing spatial-temporal multi-resolution MRF,” in Proc.Workshop on Motion and Video Computing., 2005, pp. 8-13. https://doi.org/10.1109/ACVMOT.2005.32
  11. K. Nummiaro, E. Koller-Meier, and L. V. Gool, ‘An adaptivecolor-based particle filter,’ Image and Vision Computing21(1), pp.99-110, 2003. https://doi.org/10.1016/S0262-8856(02)00129-4