새로운 고리 시스템인 2-Phenylthieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine 유도체의 손쉬운 합성

송양헌*
목원대학교 화학과

(접수 2010.7.19; 수정 2010. 8. 20; 게재확정 2010. 8. 27)

Facile Synthesis of 2-Phenylthieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine Derivatives as a New Ring System

Yang-Heon Song*
Department of Chemistry, Mokwon University, Daejeon 302-729, Korea. "E-mail: yhsong@mokwon.ac.kr (Received July 19, 2010; Revised August 20, 2010; Accepted August 27, 2010)

주제어: 싸이에노트리아졸로피리미딘 유도체, 딤로스-형태 재배열, 산화제, 고리 시스템
Keywords: Thienotriazolopyrimidine derivatives, Dimroth-type rearrangement, Oxidant, Ring system

INTRODUCTION

Much attention has been recently paid to the synthesis of some thieno[1,2,4]triazolopyrimidines and thieno[1,2,4]triazolopyrimidinones because of their biological activities. ${ }^{1-4}$ With this in mind and in continuation of our recent work on the synthesis of 2-phenylthieno[3,2-e][1,2,4]triazolo[1,5-c] pyrimidine derivatives 7^{5} we describe here a facile synthesis of 2-phenylthieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives 5 that have not been reported hitherto as a new ring system. Previous observations revealed that the thieno [3,2-e][1,2,4]triazolo[4,3-c]pyrimidines 6 can isomerizes in the presence of base to the thermodynamically more stable thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines 7 by Dimrothtype rearrangement. We, therefore, decided to apply this methodology also to the synthesis of 5 from 4.

The compounds $\mathbf{4}$ were prepared through a series of reaction starting with 3 -aminothiophene-2-carbonitrile (1) according to the modified procedure we have previously reported (Scheme 1). ${ }^{1}$ The required starting material 1 was obtained by adopting the new synthetic method. ${ }^{6}$ Reaction of 1 with triethyl orthoformate and the successive hydrazine hydrate gave 4-hydrazinothieno[3,2-d]pyrimidine (2). The hydrazone derivatives $\mathbf{3}$ were synthesized by condensation of hydrazine compound $\mathbf{2}$ with the corresponding benzaldehydes in refluxing ethanol in the presence of catalytic amount of piperidine. The oxidative cyclization of the resultant hydrazone derivatives $\mathbf{3}$ to $\mathbf{4}$ was achieved using alumina-
supported calcium hypochlorite $\left(\mathrm{Ca}(\mathrm{OCl})_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}=1: 1\right.$, grounded mixture) as a new oxidant. For instance, a maximum yield of 73% for $\mathbf{4 a}$ in 1 h was achieved with 1:3 molar ratio of hydrazone to calcium hypochlorite. The use of aluminasupported calcium hypochlorite as a heterogeneous oxidant in this reaction has advantage of enhanced reaction rate and yield, simple work-up, low cost, and eco-friendly reagent when compared to other oxidants such as bromine, ${ }^{7}$ lead tetraacetate, ${ }^{8}$ iodobenzene diacetate ${ }^{1,9}$ or copper dichloride. ${ }^{10}$

When each of $\mathbf{4}$ was treated with sodium acetate in refluxing ethanol, it underwent a Dimroth-type rearrangement to give compounds 5 through a sequence of ring opening and ring closure reaction. For instance, the reaction of $\mathbf{4 a}(1 \mathrm{mmol})$ with sodium acetate (2 mmol) in refluxing ethanol for 5 h afforded only one product, $\mathbf{5 a}$ in 68% yield. The structures of all new compounds 5 were identified by elemental analyses and spectral data. The results are summarized in Table 1. It was noticed that the two isomeric $\mathbf{4}$ and $\mathbf{5}$ showed no appreciable differences in the fragmentation pattern of MS spectra, however, the ${ }^{1} \mathrm{H}$ NMR spectra of 5 revealed that the most prominent pyrimidine proton showed signal little more downfield than the one of their isomeric 4. These results were in agreement with those reported in earlier report. ${ }^{5}$ The conversion of $\mathbf{4}$ into 5 is also analogous to rearrangement of thieno [2,3-e][1,2,4]triazolo[4,3-c]pyrimidin-5(6H)-ones in base to the isomeric thieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidin$5(6 H)$-ones. ${ }^{4}$

In conclusion, we report a facile synthesis of 2-phenyl-

Scheme 1. Reagents and conditions; (A) (i) $\mathrm{HC}(\mathrm{OEt})_{3}$, reflux (ii) hydrazine hydrate/ethanol, reflux; (B) benzaldehydes, piperidine/ethanol, reflux; (C) $\mathrm{Ca}(\mathrm{OCl})_{2}-\mathrm{Al}_{2} \mathrm{O}_{3} /$ methylene chloride, rt; (D) NaOAc /ethanol, reflux

Table 1. Preparation of compounds 5 from 4

Entry	R	Product	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) $^{\text {a }}$
1	H	$\mathbf{5 a}$	$105-107$	68
2	$4-\mathrm{Cl}$	$\mathbf{5 b}$	$250-252$	70
3	$4-\mathrm{Me}$	$\mathbf{5 c}$	$203-205$	55
4	$4-\mathrm{MeO}$	$\mathbf{5 d}$	$201-203$	62
5	$4-\mathrm{Br}$	$\mathbf{5 e}$	$207-208$	68
6	$3-\mathrm{Cl}$	$\mathbf{5 f}$	$140-142$	63
7	$3-\mathrm{Me}$	$\mathbf{5 g}$	$164-166$	60
8	$3-\mathrm{Br}$	$\mathbf{5 h}$	$134-136$	65
9	$2-\mathrm{MeO}$	$\mathbf{5 i}$	$127-129$	50

${ }^{\mathrm{a}}$ Isolated yields.
thieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives 5 via rearrangement of 3-phenylthieno[2,3-e][1,2,4]triazolo [4,3-c]pyrimidines 4.

EXPERIMENTAL

All products were characterized by IR, ${ }^{1} \mathrm{H}$ NMR, MS and elemental analysis. Melting points were measured by using the capillary tubes on Büchi apparatus and are uncorrected. Each compound of the reactions was checked on thin-layer chromatography of Merck Kieselgel $60 \mathrm{~F}_{254}$ and purified by column chromatography using Merck silica gel (70-230 mesh). IR spectra were recorded on the FT-IR Brucker Tensor 27. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DRX-300 FT-NMR spectrometer (300 MHz) with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard and chemical shifts are given in ppm (δ). Electron ionization mass spectra were recorded on a HP 59580 B spectrometer. Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer.

General procedure for the preparation of 2-phenylthieno [2,3-e] [1,2,4]triazolo[1,5-c]pyrimidine derivatives (5)
To a solution of each 3-phenylthieno[2,3-e][1,2,4]triazolo [4,3-c]pyrimidine $4(1 \mathrm{mmol})$ in ethanol $(30 \mathrm{~mL})$ was added sodium acetate $(0.164 \mathrm{~g}, 2 \mathrm{mmol})$ and the mixture was refluxed for 5 h and cooled. The precipitated solid was filtered, washed with water, dried and finally crystallized from ethanol to give the respective 2-phenylthieno $[2,3-e][1,2,4]$ triazolo[1,5-c]pyrimidine 5.

2-Phenylthieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine

 (5a)Yield 68\%; mp 105-107 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3045,1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.36-8.33(\mathrm{~m}, 2 \mathrm{H}$, H-2' and H-6'), 7.88 (d, 1H, $J=5.9 \mathrm{~Hz}, \mathrm{H}-7$), 7.65 (d, 1H, $J=5.9 \mathrm{~Hz}, \mathrm{H}-6), 7.55-7.52$ (m, 3H, H-3', H-4' and H-5'); MS: (m / z) $252\left(\mathrm{M}^{+}, 100\right), 149$ (15), 134 (20), 118 (16). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$: C, 61.89; H, 3.20; $\mathrm{N}, 22.21$. Found: C, 61.69; H, 3.39; N, 22.48.

2-(4-Chlorophenyl)thieno[2,3-e][1,2,4]triazolo[1,5-c] pyrimidine (5b)

Yield 70%; mp $250-252^{\circ} \mathrm{C}$; IR (KBr): $3052,1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.29\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-2{ }^{\prime}\right.$ and H-6'), 7.88 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.65 (d, $J=5.9 \mathrm{~Hz}$, 1H, H-6), 7.51 (d, 2H, H-3' and H-5'); MS: (m / z) 287 (M^{+}, 100), 149 (30), 134 (22). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClN}_{4} \mathrm{~S}$: C, 54.45; H, 2.46; N, 19.54. Found: C, 54.29; H, 2.31; N, 19.71.

2-p-Tolylthieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5c)

Yield 55\%; mp 203-205 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3050, 2973, 1620,
$1370 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.23(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{H}-2$ ' and H-6'), 7.86 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.63 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.34 (d, 2H, H-3' and H-5'), 2.44 (s, 3H, Me); MS: (m/z) 266 (M ${ }^{+}$, 99), 149 (35), 134 (20). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 63.14 ; \mathrm{H}, 3.78 ; \mathrm{N}, 21.04$. Found: C, 63.30; H, 3.59; N, 21.22.

2-(4-Methoxyphenyl)thieno[2,3-e][1,2,4]triazolo[1,5-c] pyrimidine (5d)

Yield 62\%; mp 201-203 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3044, 2980, 1622, $1375 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.26(\mathrm{~d}, 2 \mathrm{H}$, H-2' and H-6'), 7.85 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.62 (d, $J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.03 (d, 2H, H-3' and H-5'), 3.89 (s, 3 H , OMe); MS: (m/z) $282\left(\mathrm{M}^{+}, 100\right), 149(15), 134(22)$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 59.56 ; \mathrm{H}, 3.57$; $\mathrm{N}, 19.85$. Found: C, 59.44; H, 3.66; N, 19.93.

2-(4-Bromophenyl)thieno $[2,3-e][1,2,4]$ triazolo $[1,5-c]$

 pyrimidine (5e)Yield 68\%; mp 207-208 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3033, $1625 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-2$ ' and $\mathrm{H}-6$ '), 7.88 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.69 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6), 7.65$ (d, 2H, H-3' and H-5'); MS: $(m / z) 331\left(\mathrm{M}^{+}, 98\right)$, 149 (12), 134 (10). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrN}_{4} \mathrm{~S}: \mathrm{C}, 47.14$; H, 2.13; N, 16.92. Found: C, 46.99; H, 2.34; N, 17.14.

2-(3-Chlorophenyl)thieno[2,3-e][1,2,4]triazolo[1,5-c] pyrimidine (5f)

Yield 63\%; mp 140-142 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3035,1629 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}^{\prime}\right)$, 8.04 (m, 1H, H-6'), 7.72 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.53 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.46-7.39$ (m, 2H, H-4' and H-5'); MS: $(m / z) 287\left(\mathrm{M}^{+}, 100\right), 149(16), 134$ (20). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClN}_{4} \mathrm{~S}: \mathrm{C}, 54.45 ; \mathrm{H}, 2.46 ; \mathrm{N}, 19.54$. Found: C, 54.66; H, 2.30; N, 19.69.

2-m-Tolylthieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5g)

Yield 60\%; mp 164-166 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3036, 1625, 1375 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.18-8.14(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2$ ' and H-6'), 7.87 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.64 (d,
$J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.42\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 7.33$ (d, 1H, H-4'), 2.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$); MS: (m/z) 266 (M ${ }^{+}, 100$), 149 (10). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 63.14 ; \mathrm{H}, 3.78$; $\mathrm{N}, 21.04$. Found: C, 63.29; H, 3.65; N, 21.11.

2-(3-Bromophenyl)thieno[3,2-e][1,2,4]triazolo[1,5-c] pyrimidine (5h)

Yield 65%; mp 134-136 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3034,1622 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, 8.05 (d, 1H, H-6'), 7.74 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.59 (d, $J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.54$ (d, 1H, H-4'), 7.36 (t, 1H, H-5'); MS: (m/z) 331 ($\mathrm{M}^{+}, 100$), 149 (11), 134 (20). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrN}_{4} \mathrm{~S}: \mathrm{C}, 47.14 ; \mathrm{H}, 2.13 ; \mathrm{N}, 16.92$. Found: C, 47.28; H, 2.26; N, 17.11.

2-(2-Methoxyphenyl)thieno[3,2-e][1,2,4]triazolo[1,5-c] pyrimidine (5i)

Yield 50%; mp $127-129^{\circ} \mathrm{C}$; IR (KBr): 3030, 2975, 1620, $1375 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.28$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$), 8.14-8.10 (m, 2H, H-4' and H-6'), 7.88 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.55 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.24(\mathrm{~d}, 1 \mathrm{H}$, H-3'), 2.47 (s, 3H, OMe); MS: (m / z) 282 ($\mathrm{M}^{+}, 100$), 149 (14), 134 (18). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 59.56 ; \mathrm{H}, 3.57$; N, 19.85. Found: C, 59.69; H, 3.42; N, 19.62.

RERFERENCES

1. Jo, B. S.; Son, H. Y.; Song, Y.-H. Heterocycles 2008, 75, 3091.
2. Khattab, A. F.; El-Essawy, F. A. J. Chem. Res. 2005, 11, 736.
3. Nagamatsu, T.; Ahmed, S.; Hossion, A. M. L.; Ohno, S. Heterocycles 2007, 73, 777.
4. Nagamatsu, T.; Ahmed, S. Heterocycles 2005, 65, 2683.
5. Son, H. Y.; Song, Y.-H. J. Kor. Chem. Soc. 2010, 54, 350.
6. Song, Y.-H.; Jo, B. S. J. Heterocycl. Chem. 2009, 46, 1132.
7. (a) Gibson, M. S. Tetrahedron 1963, 19, 1587. (b) Pollak, A.; Tišler, M. Tetrahedron 1966, 22, 2073. (c) El-Gazzar, A. B.; Hassan, N. A. Molecules 2000, 5, 835.
8. Bower, J. D.; Doyle, F. P. J. Chem. Soc. 1957, 727.
9. Prakash, O.; Kumar, R; Kumar, R.; Tyagi, P.; Kuhad, R. C. Eur. J. Med. Chem. 2007, 42, 868.
10. Ciesielski, M.; Pufky, D.; Döring, M. Tetrahedron 2005, 61, 5942.
