DOI QR코드

DOI QR Code

Molecular Identification of Deer Antlers using Nucleotide Sequences of Mitochondrial Displacement Loop Region

미토콘드리아 displacement loop 영역의 염기서열을 이용한 녹용의 원산지 동정

  • Yoo, Hyun-Sook (Professional Graduate School of Oriental Medicine, Wonkwang Univ.) ;
  • Lee, Gi-Nam (Professional Graduate School of Oriental Medicine, Wonkwang Univ.) ;
  • Lee, Jin-Sung (Department of Genetic Engineering, SungKyunKwan Univ.)
  • 유현숙 (원광대학교 한의학 전문대학원) ;
  • 이기남 (원광대학교 한의학 전문대학원) ;
  • 이진성 (성균관대학교 유전공학과)
  • Received : 2010.10.04
  • Accepted : 2010.11.03
  • Published : 2010.12.30

Abstract

It is reported that about 80% of deer antlers (Cervi Pantotricuhum Cornu) produced in the world are consumed in Korea. Fraudulent replacement or mislabeling of costly deer antlers with cheaper ones, however, is one of the most common problems in the Korean deer antler market. Therefore, there is a continuous need for the development of genetic markers to discriminate between genuine and fraudulent deer antlers. This study was performed to develop a method for the identification and authentication of deer antlers using nucleotide sequence analysis against displacement loop of mitochondrial genome among four deer antlers, Cervus eleaphus sibericus, Cervus eleaphus bactrianus, Cervus eleaphus Canadensis, and Cervus eleaphus, originated from Russia, China, North America and New Zealand, respectively. As a result, multiple-alignment of mitochondrial displacement (D) loop region in 1.2 kb showed that, among the four deer antlers, a deleted sequence of about 70 bps was only found in Cervus elaphus bactrianus from China. Finally, Cervus elaphus bactrianus among nine samples of deer antlers were successfully identified by PCR using primer amplifying deleted D-loop. Cervus elaphus bactrianus was also confirmed from cloning the PCR products and their nucleotide sequence analyses were confirmed. However, no marker to identify Cervus eleaphus sibericus, Cervus eleaphus canadensis and Cervus eleaphus were found in the nucleotide sequences of mitochondrial D-loop. Our results suggest that PCR for deleted D-loop region of mitochondrial DNA are useful for identification and authentication of deer antlers of Cervus elaphus bactrianus originating from China.

우리나라는 세계 녹용 생산량의 80% 이상을 소비한다. 하지만, 중국산, 뉴질랜드산 녹용과 수입이 금지된 북미산 녹용이 원용이라고 불리는 고가의 러시아산 녹용으로 둔갑 판매, 유통되는 문제가 다수 보고되고 있다. 따라서 본 연구에서는 녹용의 원산지 동정 기술을 개발하고자 러시아, 중국, 뉴질랜드 및 북미산 녹용으로부터 미토콘드리아 D-loop 영역에 대한 원산지 특이적인 분자 마커를 탐색할 목적으로 수행되었다. 결과적으로 중국산 녹용으로부터 약 60~70 bp의 결실 부위를 확인하고 이들 부위를 특이적으로 확인할 수 있는 PCR법을 통해서 중국산 녹용의 정확한 감별 가능성을 확인하였다. 따라서 본 연구는 미토콘드리아 DNA 유래의 유전자들에 대한 염기서열 분석과 이를 이용한 PCR 동정법이 녹용의 원산지 감별에 적용될 수 있음을 보여주는 사례라 생각된다.

Keywords

References

  1. Amano, T., Y. Miyakoshi, T. Tokada, T. Kikawa, and M. Suzuki. 1994. Genetic variants of ribosomal DNA and mitochondrial DNA between swamp and river buffaloes. Anim. Genet. 25, 29-26. https://doi.org/10.1111/j.1365-2052.1994.tb00400.x
  2. Anderson, S., M. H. L. de Bruijn, A. R. Coulson, I. C. Eperon, F. Sanger, and I. G. Young. 1982. The complete sequence of the bovine mitochondrial DNA : conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156, 683-717. https://doi.org/10.1016/0022-2836(82)90137-1
  3. Aquadro, F. and B. D. Greenberg. 1982. Human mitochondrial DNA variation and evolution analysis of nucleotide sequences from seven individuals. Genetics 103, 287-312.
  4. Branicki, W., T. Kupiec, and R. Pawlowski. 2003. Validation of cytochrome b sequence analysis as method of species identification. J. Forensic Sci. 48, 83-87.
  5. Brown, W. M. 1980. Polymorphism in mitochondrial DNA of human as revealed by restriction endonuclease analysis. Proc. Natl. Acad. Sci. USA 77, 3605-3609. https://doi.org/10.1073/pnas.77.6.3605
  6. Brown, W. M., M. J. Gorge, and A. C. Wilson. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967-1971. https://doi.org/10.1073/pnas.76.4.1967
  7. Chan, K. 1995. Progress in traditional Chinese medicine. Trends Pharmacol. Sci. 16, 182-187. https://doi.org/10.1016/S0165-6147(00)89019-7
  8. Christian, W., J. R. Rentsch, and P. H. Bner. 1999. PCR-RFLP Analysis of mitochondrial DNA: A reliable method for species identification. J. Agric. Food Chem. 47, 1350-1355. https://doi.org/10.1021/jf9808426
  9. Chung, E. R. and K. Y. Chung. 2005. Effect of RFLP marker of the mitochondrial DNA D-loop region on milk production in Korean cattle. Korean J. Food Sci. Ani. Resour. 25, 218-225.
  10. Cook, C. E., Y. Wang, and G. Sensabaugh. 1999. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cerves nippon) and report of tandom repeats in the control region. Mol. Phylogenet. Evol. 12, 47-56. https://doi.org/10.1006/mpev.1998.0593
  11. Cronin, M. A., L. Renecker, B. J. Poerson, and J. C. Patton. 1995. Genetic variation in domestic reindeer and wild caribou in Alaska. Anim. Genet. 26, 427-434. https://doi.org/10.1111/j.1365-2052.1995.tb02695.x
  12. Chung, E. R., W. T. Kim, Y. S. Kim, J. K. Lee, and S. K. Han. 2002. Sequence and genetic variation of mitochondrial DNA D-loop region in Korean cattle. Korean J. Anim. Sci. 44, 181-190. https://doi.org/10.5187/JAST.2002.44.2.181
  13. Dratch, P. and U. Gyllensten. 1985. Genetic differentiation of red deer and North. American elk (Wapiti). Biol. Deer Production 22, 37-40.
  14. Feldhamer, G. A. 1980. Cervus Nippon. Mamm. Species 128, 1-7.
  15. Hong, N. D., D. Won, N. J. Kim, S. Y. Chang, W. G. Youn, and H. S. Kim. 1991. Studies on the analysis of constituents of deer hirn (I): Assay of trace elements and TLC pattern analysis of gangliosides. Korean J. Phrmacogen. 22, 171-182
  16. Hutchison, C. A., J. E. Newbold, S. S. Potter, and M. H. Edgell. 1974. Maternal inheritance of mammalian mitochondrial DNA. Nature 251, 536-538. https://doi.org/10.1038/251536a0
  17. Hwang, J. S., J. S. Lee, H. A. Kang, S. M. Lee, and H. Y. Sohn. 1997. Genetic relationships among parental Bombyx mori strains of the current F1 hybrid silkworm based on RAPD. Korean J. Appl. Entomol. 36, 206-214.
  18. Irwin, D. M., T. D. Kocher, and A. C. Wilson. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128-144. https://doi.org/10.1007/BF02515385
  19. Kim, S. H. 2000. Effect of the antler extracts from various origins and parts on homopoietic activity in normal and cyclophosphamide-induced pathologic CD34 cells. The Annual Report of KFDA 4, 627-628.
  20. Kuwayama, R., and T. Ozawa. 2000. Phylogenetic relationship and European red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 15, 115-123. https://doi.org/10.1006/mpev.1999.0731
  21. Lee, S. M. 2000. Comparative investigation on the pharmacological effect of antler. The Annual Report of KFDA 4,626
  22. Ludt, C. J., W. Schroeder, O. Rottmann O, and R. Kuehn. 2004. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol. Phylogenet. Evol. 31, 1064-1083. https://doi.org/10.1016/j.ympev.2003.10.003
  23. Matsunaga, T., K. Chikuni, R. Tanabe, S. Muroya, H. Nakai, K. Shibata, J. Yamada, and Y. Shinmura. 1993. Determination of mitochondrial cytochrome b gene sequence for red deer (Cervus elaphus) and the differentiation of closely related deer meats. Meat Sci. 4, 379-385.
  24. Michael, M., F. Miyamoto, K. Fred, A. Oliver, and A. Ryder. 1990. Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc. Nati. Acad. Sci. USA 87, 6127-6131. https://doi.org/10.1073/pnas.87.16.6127
  25. Nagata, J., R. Masuda, K. Kaji, M. Kaneko, and M. C. Yoshida. 1998. Genetic variation and population structure of the Japanese sika deer (Cervus nippon) in Hokkaido Island, based on mitochondrial D-loop sequences. Mol. Ecol. 7, 871-877. https://doi.org/10.1046/j.1365-294x.1998.00404.x
  26. Oh, S. J., T. H. Kim, D. H. Yoon, E. W. Park, H. Y. Lee, I. C. Cheong, T. Y. Thak, K. N. Kim, and J. Y. Han. 2000. A study on genotype frequencies of the bovine melanocortin receptor 1 (MCa1R) in cattle breeds. J. Ani. Sci. Technol. 42, 735-744.
  27. Partis, L., D. Croan, Z. Gul, R. Clark, T. Coldham, and J. Murby. 2000. Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci. 54, 369-376. https://doi.org/10.1016/S0309-1740(99)00112-6
  28. Polziehn, R. O. and C. Strobeck. 1998. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol. Phylogenet. Evol. 22, 342-356. https://doi.org/10.1006/mpev.2001.1065
  29. Randi, E., N. Mucci, F. Claro-Hergueta, A. Bonnet, and E. J. P. Douzery. 2001. A mitochondrial DNA control region phylogeny of the cervinae: speciation in Cervus and implications for conservation. Animal Conservation 4, 1-11. https://doi.org/10.1017/S1367943001001019

Cited by

  1. Development of a PCR-based assay to differentiate Cervus elaphus sibiricus from Cervus antlers vol.58, pp.1, 2015, https://doi.org/10.1007/s13765-015-0005-2