DOI QR코드

DOI QR Code

Flavor Modification of Mideoduck (Styela clava) Drips by Maillard Reaction

Maillard 반응에 의한 미더덕 체액의 풍미개선

  • Kang, Seok-Joong (Department of Marine Life Science, Gyeongsang National University) ;
  • Jung, Sung-Ju (Department of Aqualife Medicine, Chonnam National University) ;
  • Choi, Yeung-Joon (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Byeong-Dae (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University)
  • 강석중 (경상대학교 생명과학과) ;
  • 정성주 (전남대학교 수산생명의학과) ;
  • 최영준 (경상대학교 해양식품공학과/해양산업연구소) ;
  • 최병대 (경상대학교 해양식품공학과/해양산업연구소)
  • Received : 2010.08.25
  • Accepted : 2010.11.03
  • Published : 2010.12.30

Abstract

Mideoduck drips were mixed with amino acids (Met, Tau, Gly, Ala, Thr, Cys), thiamine and sugars (Glucose, Ribose) for flavor modification and evaluation using the Maillard reaction. To mask the seafood flavor, onions, spring onions, garlic, ginger, citric orange and green tea were mixed with Mideoduck drips at $160^{\circ}C$ for 2.5 hr in a stainless still reaction bomb. The glucose/thiamine model reaction system was estimated to be lower than the ribose/thiamine model system, and an extreme case is the ribose/Met model system. Mixed system of glucose, ribose and taurine containing sulfur compounds showed fair results. Among the Mideoduck drips mixed with sugars and amino groups, only thiamine model systems were estimated to be normal. The flavor composition of Mideoduck drips/sugars model system, and long chain fatty acids were composed of 31.32~62.71% total flavor content. The 1,2-benzenedicarboxylic acid dibutylester contents made up more than 20% of the model system in groups A, B and C. From the model system in this study, drip/glucose, drip/ribose, drip/glucose/citric orange, and drip/glucose/glycine/cystine groups showed most intense good flavor.

Maillard 반응의 기본이 되는 당과 아미노산을 결정하기 위하여 미더덕 체액, 6탄당인 glucose와 5탄당인 ribose를 기본으로 하여, thiamine, 아미노산으로는 methionine, taurine, glycine, alanine, threonine, cystine 등을 사용하였고, 실용적인 방안을 강구하기 위하여 식용하는 양파, 마늘, 감귤, 생강, 녹차, 파 등을 첨가하여 반응액을 만들었다. Ribose와 thiamine 구가 패널로부터 가장 높은 평가를 받았고, 이어서 glucose와 thiamine 구가, ribose와 methionine 구는 아주 나쁜 풍미를 형성하는 것으로 나타났다. 함황화합물인 taurine을 첨가한 glucose 및 ribose 구는 보통의 평가로 나타났고, 체액에 당과 아미노산을 첨가한 경우도 thiamine 구만 보통으로 평가되었으나 나머지 아미노산의 경우 싫어 하는 것으로 나타났다. 기본의 액즙-당 반응구에서는 장쇄지방산의 함량이 31.32-62.71%로 가장 높은 함량을 보였고, A, B, C구에서는 1,2-bezenedicarboxylic acid dibutyl ester의 함량도 20%를 상회하는 것으로 나타나 이들 화합물이 전체 향기성분의 50% 이상으로 이들이 체액-당 반응계의 주된 화합물로 생성되어, 체액을 활용한 조미료의 생산을 저렴한 비용으로 할 수 있는 것으로 나타났다.

Keywords

References

  1. Carpenter, K. J. 1973. Damage to lysine in food processing: Its measure and its significance. Nutr. Abstr. Rev. 43, 424-428.
  2. Cerny, C. 2007. Origin of carbons in sulfur-containing aroma compounds from the Maillard reaction of xylose, cysteine and thiamine. LWT 40, 1309-1315. https://doi.org/10.1016/j.lwt.2006.09.008
  3. Cha, Y. J. and H. H. Baek. 1995. Quantitative analysis of akylpyrazines in snow crab cooker effluents. J. Korean Soc. Food Nutr. 24, 454-458.
  4. Chou, C. C. and C. H. Hwan. 1994. Effect of ethanol on the hydrolysis of protein and lipid during the aging of a Chinese fermented soya bean curd-sufu. J. Sci. Food Agric. 66, 393-398. https://doi.org/10.1002/jsfa.2740660318
  5. Chun, Y. H., C. K. Kim, and W. J. Kim. 1986. Effect of temperature, pH and sugars on kinetic property of Maillard reaction. Korean J. Food Sci. Technol. 18, 55-60.
  6. Chung, H. Y. and K. R. Cadwallader. 1994. Aroma extract dilution analysis of blue crab claw meat volatiles. J. Agric. Food Chem. 42, 2867-2870. https://doi.org/10.1021/jf00048a040
  7. Evers, W. J., H. H. Heisohn Jr., B. J. Mayers, and A. Sanderson. 1976. Furans substituted in the three position with sulfur, pp. 184-196, In Charalabous G. and I. Katz (eds.), Phenolic, Sulfur and Nitrogen Compounds in Food Flavours. ACS Symposium series No. 26, Washington DC.
  8. Hirano, T., S. Yamazawa, and M. Suyama. 1978. Chemical composition of gonad extract of sea urchin, Stronglocentrotus nudus. Bull. Japan Soc. Sci. Fish 44, 1037-1042. https://doi.org/10.2331/suisan.44.1037
  9. Hodge, J. E. 1953. Chemistry of browning reactions in model systems. J. Agric. Food Chem. 1, 928-932. https://doi.org/10.1021/jf60015a004
  10. Hsieh, T. C. Y., W. Vejaphan, S. S. Williams, and J. E. Matiella. 1989. Volatile flavor components in thermally processed Louisiana red swamp crayfish and blue crab, pp 386-395, In Parliament, T. H., R. J. McGorrin, and C. T. Ho (eds.), Thermal Generation of Aromas. ACS Symposium series, No. 409, Washington DC.
  11. Jeong, E. J., W. J. Cho, and Y. J. Cha. 2008. Volatile flavor compounds in Omandungi (Stylea plicata)-Doenjang (Soybean paste) soups and stew by cooking. J. Life Sci. 18, 1570-1577. https://doi.org/10.5352/JLS.2008.18.11.1570
  12. Josephson, D. B., and R. C. Lindsay. 1986. Enzymic generation of volatile aroma compounds from fresh fish, pp 201-219, In Parliament, T. H. and R. Croteau (eds.), Biogeneration of Aroma. ACS Symposium series No. 317, Washington DC.
  13. osephson, D. B. and R. C. Lindsay. 1985. Retro-aldol degradation of unsaturated aldehydes: Role in the formation of c4-heptenal from t2,c6-nonadienal in fish, oyster, and other flavours. JAOCS 64, 132-138.
  14. Ko, S. N., S. H. Yoon, S. K. Yoon, and W. J. Kim. 1997. Development of meat-like flavor by Maillard reaction of model system with amino acids and sugars. Korean J. Food Sci. Technol. 29, 827-838.
  15. Kwon, T. W., D. B. Menzel, and H. S. Olcott. 1965. Reactivity of malonsldehyde with food constituents. J. Food Sci. 30, 808-809. https://doi.org/10.1111/j.1365-2621.1965.tb01845.x
  16. Lee, J. H. and K. W. Han. 1989. The amino-carbonyl reaction in the fructose-glycine mixture system. Korean J. Food Sci. Technol. 21, 351-359.
  17. Loda, N. M., J. S. Lee, S. J. Kang, and B. D. Choi. 2006. Seasonal variation in the nutritional content of Mideodeck Styela clava. Fish Aqua. Sci. 9, 49-56.
  18. Mega, J. A. 1975. The role of sulfur compounds in food flavor. Par II. Thiophenes. Crit. Rev. Food Sci. Nutr. 6, 241-270. https://doi.org/10.1080/10408397509527192
  19. Nursten, H. E. 1987. Aroma compounds from the Maillard reaction, pp. 173-186, In Birch, G. G. and M. G. Lindley (eds.), Developments in Food Flavours. Elsevier Science Inc., New York.
  20. Oh, K. S., S. T. Kang, and C. T. Ho. 2001. Flavor constituents in enzyme hydrolysates from shore swimming crab and spotted shrimp. J. Korean Soc. Food Sci. Nutr. 30, 787-795.
  21. Pham, C. B. and J. C. Cheftel. 1990. Influence of salts, amino acids and urea on the non-enzymatic browning of the protein-sugar system. Food Chem. 37, 251-260. https://doi.org/10.1016/0308-8146(90)90105-D
  22. Song, P. S., C. O. Chichester, and F. H. Stadman. 1966. Kinetic behavior and mechanism of inhibition in the Maillard reaction: Kinetic behavior of the reaction between D-glucose and glycine. J. Food Sci. 31, 906-913. https://doi.org/10.1111/j.1365-2621.1966.tb03269.x
  23. Tanchotikul, U. and T. C. Y. Hsieh. 1989. Volatile flavor components from crayfish waste. J. Food Sci. 54, 1515-1520. https://doi.org/10.1111/j.1365-2621.1989.tb05149.x
  24. Yoon, S. H., J. K. Lee, H. S. Nam, and H. J. Lee. 1994. Formation of meatlike flavors by Maillard reaction using hydrolyzed vegetable protein (HVP). Korean J. Food Sci. Technol. 26, 781-786.