DOI QR코드

DOI QR Code

애기장대 peroxiredoxins (Prxs)과 sulphiredoxin1 (Srx1)의 작용기작

Working Mechanism of Peroxiredoxins (Prxs) and Sulphiredoxin1 (Srx1) in Arabidopsis thaliana

  • 김민갑 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 수디 무하마드 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 박상렬 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 황덕주 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 배신철 (농촌진흥청 국립농업과학원 신작물개발과)
  • Kim, Min-Gab (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA) ;
  • Su'udi, Mukhamad (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA) ;
  • Park, Sang-Ryeol (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA) ;
  • Hwang, Duk-Ju (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA) ;
  • Bae, Shin-Chul (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA)
  • 투고 : 2010.11.04
  • 심사 : 2010.12.14
  • 발행 : 2010.12.30

초록

식물체는 대사과정의 부산물로서 또는 생물학적으로 피해를 줄 수 있는 다양한 종류의 외부 스트레스에 직면했을 활성산소(Reactive Oxygen Species, ROS)를 생산한다. 이러한 oxidative 스트레스로부터 자신들을 보호하기 위하여 식물세포들은 다양한 종류의 항산화 단백질들을 보유하고 있다. 하지만 이들의 작용기작은 여전히 자세히 밝혀지지 않았다. Peroxiredoxins (Prxs)은 식물체에 광범위하게 존재하는 thiol-을 함유한 항산화 단백질로 N-말단에 존재하는 cysteine 잔기를 이용하여 hydrogen peroxide를 환원한다. 이러한 과정에서 peroxiredoxins의 활성부위인 cysteine 잔기는 선택적으로 cysteine sulfinic acid로 산화됨으로써 peroxidase activity의 불활성화를 일으킨다. 이러한 산화과정은 비가역적으로 일어난다. 최근 발견된 진핵생물들에 잘 보존된 sulphiredoxin (Srx1)이라 불리는 단백질은 cysteine-sulphinic acid를 환원시키는 기능을 지닌다. 본 논문에서는 애기장대에 존재하는 Prxs와 Srx의 기능에 대하여 서술할 예정이다.

Plants generate reactive oxygen species (ROS) as a by-product of normal aerobic metabolism or when exposed to a variety of stress conditions, which can cause widespread damage to biological macromolecules. To protect themselves from oxidative stress, plant cells are equipped with a wide range of antioxidant proteins. However, the detailed reaction mechanisms of these are still unknown. Peroxiredoxins (Prxs) are ubiquitous thiol-containing antioxidants that reduce hydrogen peroxide with an N-terminal cysteine. The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. Recently identified small protein sulphiredoxin (Srx1), which is conserved in higher eukaryotes, reduces cysteine.sulphinic acid in yeast peroxiredoxin. Srx1 is highly induced by $H_2O_2$-treatment and the deletion of its gene causes decreased yeast tolerance to $H_2O_2$, which suggest its involvement in the metabolism of oxidants. Moreover, Srx1 is required for heat shock and oxidative stress induced functional, as well as conformational switch of yeast cytosolic peroxiredoxins. This change enhances protein stability and peroxidase activity, indicating that Srx1 plays a crucial role in peroxiredoxin stability and its regulation mechanism. Thus, the understanding of the molecular basis of Srx1 and its regulation is critical for revealing the mechanism of peroxiredoxin action. We postulate here that Srx1 is involved in dealing with oxidative stress via controlling peroxiredoxin recycling in Arabidopsis. This review article thus will be describing the functions of Prxs and Srx in Arabidopsis thaliana. There will be a special focus on the possible role of Srx1 in interacting with and reducing hyperoxidized Cys-sulphenic acid of Prxs.

키워드

참고문헌

  1. Baier, M. and K. J. Dietz. 1997. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. Plant J. 12, 179-190. https://doi.org/10.1046/j.1365-313X.1997.12010179.x
  2. Barranco-Medina, S., J. J. Lazaro, and K. J. Dietz. 2009. The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett. 18, 1809-16.
  3. Biteau, B., J. Labarre, and M. B. Toledano. 2003. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 425, 980-984. https://doi.org/10.1038/nature02075
  4. Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot (Lond). 91, 179-194. https://doi.org/10.1093/aob/mcf118
  5. Bolwell, P. P., A. Page, M. Pislewska, and P. Wojtaszek. 2001. Pathogenic infection and the oxidative defences in plant apoplast. Protoplasma 217, 20-32. https://doi.org/10.1007/BF01289409
  6. Brehelin, C., E. H. Meyer, J. P. de Souris, G. Bonnard, and Y. Meyer. 2003. Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity. Plant Physiol. 132, 2045-2057. https://doi.org/10.1104/pp.103.022533
  7. Chae, H. Z., S. J. Chung, and S. G. Rhee. 1994. Thioredoxin- dependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
  8. Chae, H. Z., K. Robison, L. B. Poole, G. Church, G. Storz, and S. G. Rhee. 1994. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA. 91, 7017-7021. https://doi.org/10.1073/pnas.91.15.7017
  9. Chae, H. Z., T. B. Uhm, and S. G. Rhee. 1994. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc. Natl. Acad. Sci. USA. 91, 7022-7026. https://doi.org/10.1073/pnas.91.15.7022
  10. Chen, J. W., C. Dodia, S. I. Feinstein, M. K. Jain, and A. B. Fisher. 2000. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J. Biol. Chem. 275, 28421-28427. https://doi.org/10.1074/jbc.M005073200
  11. Chu, S. H., H. N. Noh, S. Kim, K. H. Kim, S. W. Hong, and H. Lee. 2010. Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation. Plant Mol. Biol. 74, 493-502. https://doi.org/10.1007/s11103-010-9691-7
  12. Dat, J., S. Vandenabeele, E. Vranova, M. Van Montagu, D. Inze, and Breusegem. F. Van. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779-795. https://doi.org/10.1007/s000180050041
  13. Declercq, J. P., C. Evrard, A. Clippe, D. V. Stricht, A .Bernard, and B. Knoops. 2001. Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J. Mol. Biol. 311, 751-759. https://doi.org/10.1006/jmbi.2001.4853
  14. Dietz, K. J. 2003. Plant peroxiredoxins. Annu. Rev. Plant Biol. 54, 93-107. https://doi.org/10.1146/annurev.arplant.54.031902.134934
  15. Dietz, K. J., F. Horling, J. Konig, and M. Baier. 2002. The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J. Exp. Bot. 53, 1321-1329. https://doi.org/10.1093/jexbot/53.372.1321
  16. Finkemeier, I. G. M., P. Lamkemeyer, A. Kandlbinder, L. J. Sweetlove, and K. J Dietz. 2005. The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J. Biol. Chem. 280, 12168-12180. https://doi.org/10.1074/jbc.M413189200
  17. Fujii, J. and Y. Ikeda. 2002. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox. Rep. 7, 123-130. https://doi.org/10.1179/135100002125000352
  18. Georgiou, G. and L. Masip. 2003. Biochemistry. An overoxidation journey with a return ticket. Science 300, 592-594. https://doi.org/10.1126/science.1084976
  19. He, X., and A. R. Kermode. 2010. Programmed cell death of the megagametophyte during post-germinative growth of white spruce (Picea glauca) seeds is regulated by reactive oxygen species and the ubiquitin-mediated proteolytic system. Plant Cell Physiol. 51, 1707-1720. https://doi.org/10.1093/pcp/pcq130
  20. Hirotsu, S., Y. Abe, K. Okada, N. Nagahara, H. Hori, T. Nishino, and T. Hakoshima. 1999. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc. Natl. Acad. Sci. USA 96, 12333-12338. https://doi.org/10.1073/pnas.96.22.12333
  21. Hofmann, B., H. J. Hecht, and L. Flohe. 2002. Peroxiredoxins. Biol. Chem. 383, 347-364. https://doi.org/10.1515/BC.2002.040
  22. Horling, F., M. Baier, and K. J. Dietz. 2001. The cellular redox poise regulates expression of the peroxide detoxifying chloroplast 2-Cys peroxiredoxin in the liverwort Riccia fluitans. Planta. 214, 283-287. https://doi.org/10.1007/s004250100616
  23. Horling, F., J. Konig, and K. J. Dietz. 2002. Type II peroxiredoxin C, a member of the peroxiredoxin family of arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins. Plant Physiol. Biochem. 40, 491-499. https://doi.org/10.1016/S0981-9428(02)01396-7
  24. Horling, F., P. Lamkemeyer, J. Konig, I. Finkemeier, A. Kandlbinder, M. Baier, and K. J. Dietz. 2003. Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol. 131, 317-325. https://doi.org/10.1104/pp.010017
  25. Kang, S. W., I. C. Baines, and S. G. Rhee. 1998. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J. Biol. Chem. 273, 6303-6311. https://doi.org/10.1074/jbc.273.11.6303
  26. Karpinski, S., H. Reynolds, B. Karpinska, G. Wingsle, G. Creissen, and P. Mullineaux. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657. https://doi.org/10.1126/science.284.5414.654
  27. Kong, W., S. Shiota, Y. Shi, H. Nakayama, and K. Nakayama. 2000. A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp). Biochem. J. 351, 107-114. https://doi.org/10.1042/0264-6021:3510107
  28. Konig, J., M. Baier, F. Horling, U. Kahmann, G. Harris, P. Schurmann, and K. J. Dietz. 2002. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc. Natl. Acad. Sci. USA. 99, 5738-5743. https://doi.org/10.1073/pnas.072644999
  29. Kruft, V., H. Eubel, L. Jansch, W. Werhahn, and H. P. Braun. 2001. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol. 127, 1694-1710. https://doi.org/10.1104/pp.010474
  30. Lushchak, V. I. 2011. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 153, 175-190. https://doi.org/10.1016/j.cbpc.2010.10.004
  31. Mitsumoto, A., Y. Takanezawa, K. Okawa, A. Iwamatsu, and Y. Nakagawa. 2001. Variants of peroxiredoxins expression in response to hydroperoxide stress. Free Radic. Biol. Med. 30, 625-635. https://doi.org/10.1016/S0891-5849(00)00503-7
  32. Mullineaux, P. and S. Karpinski. 2002. Signal transduction in response to excess light: getting out of the chloroplast. Curr. Opin. Plant Biol. 5, 43-48. https://doi.org/10.1016/S1369-5266(01)00226-6
  33. Neumann, C. A., D. S. Krause, C. V. Carman, S. Das, D. P. Dubey, J. L. Abraham, R. T. Bronson, Y. Fujiwara, S. H. Orkin, and R. A. Van Etten. 2003. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561-565. https://doi.org/10.1038/nature01819
  34. Orozco-Cardenas, M. L., J. Narvaez-Vasquez, and C. A. Ryan. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13, 179-191. https://doi.org/10.1105/tpc.13.1.179
  35. Park, S. G., M. K. Cha, W. Jeong, and I. H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723-5732. https://doi.org/10.1074/jbc.275.8.5723
  36. Pulido, P., M. C. Spínola, K. Kirchsteiger, M. Guinea, M. B. Pascual, M. Sahrawy, L. M. Sandalio, K. J. Dietz, M. Gonzalez, and F. J. Cejudo. 2010. Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J. Exp. Bot. 61, 4043-4045. https://doi.org/10.1093/jxb/erq218
  37. Rabilloud, T., M. Heller, F. Gasnier, S. Luche, C. Rey, R. Aebersold, M. Benahmed, P. Louisot, and J. Lunardi. 2002. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277, 19396-19401. https://doi.org/10.1074/jbc.M106585200
  38. Rhee, S. G., S. W. Kang, T. S. Chang, W. Jeong, and K. Kim. 2001. Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52, 35-41. https://doi.org/10.1080/15216540252774748
  39. Schroder, E., J. A. Littlechild, A. A. Lebedev, N. Errington, A. A. Vagin, and M. N. Isupov. 2000. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Structure Fold Des. 8, 605-615. https://doi.org/10.1016/S0969-2126(00)00147-7
  40. Seo, M. S., S. W. Kang, K. Kim, I. C. Baines, T. H. Lee, and S. G. Rhee. 2000. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275, 20346-20354. https://doi.org/10.1074/jbc.M001943200
  41. Stacy, R. A., E. Munthe, T. Steinum, B. Sharma, and R. B. Aalen. 1996. A peroxiredoxin antioxidant is encoded by a dormancy-related gene, Per1, expressed during late development in the aleurone and embryo of barley grains. Plant Mol. Biol. 31, 1205-1216. https://doi.org/10.1007/BF00040837
  42. Stacy, R. A., T. W. Nordeng, F. A. Culianez-Macia, and R. B. Aalen. 1999. The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. Plant J. 19, 1-8. https://doi.org/10.1046/j.1365-313X.1999.00488.x
  43. Verdoucq, L., F. Vignols, J. P. Jacquot, Y. Chartier, and Y. Meyer. 1999. In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J. Biol. Chem. 274, 19714-19722. https://doi.org/10.1074/jbc.274.28.19714
  44. Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322, 681-692.
  45. Woo, H. A., H. Z. Chae, S. C. Hwang, K. S. Yang, S. W. Kang, K. Kim, and S. G. Rhee. 2003. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653-656. https://doi.org/10.1126/science.1080273
  46. Woo, H. A . W. Jeong, T. S. Chang, K. J. Park, S. J. Park, J. S. Yang, and S. G. Rhee. 2005. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J. Biol. Chem. 4, 3125-3128.