DOI QR코드

DOI QR Code

Roles of Glyceraldehyde-3-Phosphate Dehydrogenase in Edwardsiella tarda Pathogenesis

Edwardsiella tarda의 glyceraldehyde-3-phosphate dehydrogenase가 병원성에 미치는 영향

  • Yu, Jong-Earn (Department of Microbiology, Pusan National University) ;
  • Oh, Young-Eun (Department of Microbiology, Pusan National University) ;
  • Lee, Tae-Ho (Department of Microbiology, Pusan National University) ;
  • Kang, Ho-Young (Department of Microbiology, Pusan National University)
  • Received : 2010.06.03
  • Accepted : 2010.12.23
  • Published : 2010.12.30

Abstract

A research group demonstrated that the 37 kDA protein of Edwardsiella tarda, a causing causative agent of edwardsiellosis in fish, exhibited high antigenicity in Japanese flounder. The research group also showed that the N-terminus amino acid sequences of the 37 kDa protein were mapped to the N-terminus of GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Using degenerated primer sets based on the known N-terminus sequence, the corresponding E. tarda DNA was amplified and cloned. The nucleotide sequences of the cloned gene revealed high homology with a bacterial gene for GAPDH, as we was expected. The amino acid sequence of E. tarda GAPDH (etGAPDH) revealed a <70% similarity with GAPDH proteins in other Enterobacteriaceae. With the application of artificial protein overexpression system in Escherichia coli, the recombinant etGAPDH (rGAPDH) was produced and purified. In this study, Using the purified rGAPDH, the etGAPDH specific polyclonal antibody has been was generated using the purified rGAPDHin this study. The immunoblotting analyses demonstrated that the location of the GAPDH protein is located with the association of is associated with the envelops of E. tarda. The rGAPDH was administrated into Japanese flounder via IP route for evaluation of the protective ability. Although the specific antibody titer against etGAPDH was increased about 3-fold after 4 weeks post-vaccination, the survival rates of vaccinated Japanese flounder and the control group with wild type E. tarda was were 12.5% and 0%, respectively. Our results indicated that rGAPDH is immunoreactive antigen but that it will not generate protective immunity in Japanese flounder.

Edwardsiella tarda는 그람 음성의 장내세균과의 주요 어병세균으로 어류에 edwardsiellosis를 유발하는 전신감염성 병원체이다. 최근 병원성 세균의 외막 단백질들은 세균성 감염에 있어서 숙주와 반응하여 면역반응을 유도하는 것으로 여겨져 연구가 되고 있다. 일본의 연구팀은 어류에서 에드워드병의 원인체인 E. tarda의 37 kDa 단백질이 넙치에서 높은 항원성을 제시하는 것을 보고하였다. 또한 그 연구자들은 37 kDa 단백질의 N-말단 아미노산 서열이 GAPDH와 대응하는 것을 밝혔다. 본 연구에서는 다른 세균에서 알려진 N-말단 서열을 기반으로 primer를 제작하여 이에 상응하는 E. tarda DNA를 증폭하고 클로닝하였다. 이 DNA단편의 염기서열은 예상한 바와 같이 세균의 GAPDH유전자인 gapA와 높은 상동성이 있고, E. tarda GAPDH (etGAPDH)의 아미노산 서열은 다른 장내세균의 GAPDH와 70% 이상의 상동성을 보이는 것을 확인하였다. E. tarda의 외막단백질에 특이적으로 반응하는 항체를 이용하여 E. tarda의 GAPDH가 외막에 존재한다는 것을 증명하였고, gapA의 염기서열을 바탕으로하여 재조합 GAPDH를 과발현 시켰다. 과발현된 재조합단백질 GAPDH는 GAPDH 특이적인 항체를 제조하는데 사용되었고, 또한 넙치에 면역시켜 단일 단백질 백신으로서의 활용도를 모색하였다. 비록 재조합 GAPDH가 면역된 넙치에서 GAPDH에 특이적인 항체가 증가하였음에도 불구하고, E. tarda로 공격실험을 하였을 때 면역된 넙치의 생존율이 12.5%로 측정되어 면역된 그룹과 면역되지 않은 그룹간에 큰 차이가 없는 것이 확인되었다.

Keywords

References

  1. Allen, R. and K. Trach. 1987. Identification of the 37-kD aprotein displaying a variable interaction with the erythroid cell membrane as glyceraldehyde-3-phosphate dehydrogenase. J. Biological Chemistry 262, 649-653.
  2. Amandi, A., S. F. Hiu, J. S. Rohovec, and J. L. Fryer. 1982. Isolation and characterization of Edwardsiella tarda from fall chinook salmon (Oncorhynchus tshawytscha). Appl. Environ. Microbiol. 43, 1380-1384.
  3. Bertani, G. 1951. Studies on lysogenesis I.: The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293-300.
  4. Durrieu, C. and F. Bernier-Valentin. 1987. Microtubules bind glyceraldehyde 3-phosphate dehydrogenase and modulate its enzyme activity and quaternary structure. Arch. Biochem. Biophys. 252, 32-40 https://doi.org/10.1016/0003-9861(87)90005-1
  5. Edwards, R. and L. Keller. 1998. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207, 149-157. https://doi.org/10.1016/S0378-1119(97)00619-7
  6. Erttmann, K., A. Kleensang, E. Schneider, S. Hammerschmidt, D. W. Büttner, and M. Gallin. 2005. Cloning, characterization and DNA immunization of an Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (OV-GAPDH). Biochim. Biophys. Acta. 1741, 85-94. https://doi.org/10.1016/j.bbadis.2004.12.010
  7. Hirono, I., N. Tange, and T. Aoki. 1997. Iron-regulated haemolysin gene from Edwardsiella tarda. Mol. Microbiol. 24, 851-856. https://doi.org/10.1046/j.1365-2958.1997.3971760.x
  8. Hughes, M. J., J. C. Moore, J. D. Lane, R. Wilson, P. K. Pribul, Z. N. Younes, R. J. Dobson, P. Everest, A. J. Reason, J. M. Redfern, F. M. Greer, T. Paxton, M. Panico, H. R. Morris, R. G. Feldman, and J. D. Santangelo . 2002. Identification of major outer surface proteins of Streptococcus agalactiae. Infect. Immun. 70, 1254-1259. https://doi.org/10.1128/IAI.70.3.1254-1259.2002
  9. Janda, J. M., S. L. Abbott, S. Kroske-Bystrom, W. K. Cheung, C. Powers, R. P. Kokka, and K. Tamura. 1991. Pathogenic properties of Edwardsiella species. J. Clin. Microbiol. 29, 1997-2001.
  10. Kawai, K., Y. Liu, K. Ohnishi, and S. Oshima. 2004. A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine 22, 3411-3418. https://doi.org/10.1016/j.vaccine.2004.02.026
  11. Kubota, S., T. Miyazaki, and T. Miyashita. 1982. Histopathological studies on edwardsiellosis of tilapia, 1: Natural infection. Bull. Faculty Fish. 9, 155-165.
  12. Ling, S. H., X. H. Wang, L. Xie, T. M. Lim, and K. Y. Leung. 2000. Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Microbiology 146 (Pt 1), 7-19.
  13. Liu, Y., S. Oshima , K. Kurohara, K. Ohnishi, and K. Kawai. 2005. Vaccine efficacy of recombinant GAPDH of Edwardsiella tarda against Edwardsiellosis. Microbiol. Immunol. 49, 605-612. https://doi.org/10.1111/j.1348-0421.2005.tb03652.x
  14. Meyer, F. P. and G. L. Bullock. 1973. Edwardsiell a new pathogen of channel catfish (Ictalurus punctatus). Appl. Microbiol. 25, 155-156.
  15. Modun, B. and P. Williams. 1999. The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun. 67, 1086-1092.
  16. Mohanty, B. R. and P. K. Sahoo. 2007. Edwardsiellosis in fish: a brief review. J. Biosci. 32, 1331-1344. https://doi.org/10.1007/s12038-007-0143-8
  17. Nakatsugawa, T. 1983. Edwardsiella tarda isolated from cultured young flounder [Paralichthys olivaceus, in Japan]. Fish Pathology 18, 99-101. https://doi.org/10.3147/jsfp.18.99
  18. Pancholi, V. and V. A. Fischetti. 1992. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J. Exp. Med. 176, 415-426. https://doi.org/10.1084/jem.176.2.415
  19. Sae-Oui, D. and K. Muroga. 1984. A case of Edwardsiella tarda infection in cultured colored carp Cyprinus carpio. Fish Pathology (Japan) 19, 197-199. https://doi.org/10.3147/jsfp.19.197
  20. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning‎ a laboratory manual, 3rd eds. Cold spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  21. Seltmann, G. and O. Holst. 2002. The bacterial cell wall‎, Springer-Verlag, Heidelberg, New York.
  22. Shotts, E. B. and W. D. Waltman. 1990. A medium for the selective isolation of Edwardsiella ictaluri. J. Wildl. Dis. 26, 214-218. https://doi.org/10.7589/0090-3558-26.2.214
  23. Srinivasa Rao, P. S., T. M. Lim, and K. Y. Leung. 2001. Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates. Infect Immun. 69, 5689-5697. https://doi.org/10.1128/IAI.69.9.5689-5697.2001
  24. Srinivasa Rao, P. S., Y. Yamada, and K. Y. Leung. 2003. A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology (Reading, Engl). 149, 2635-2644 https://doi.org/10.1099/mic.0.26478-0
  25. Thune, R., L. Stanley, and R. Cooper. 1993. Pathogenesis of gram-negative bacterial infections in warmwater fish. Ann. Review Fish. Dis. 3, 37-68. https://doi.org/10.1016/0959-8030(93)90028-A
  26. Tsai, I. H. and S. N. Murthy, and T. L. Steck. 1982. Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 257, 1438-1442.
  27. Wakabayashi, H. and S. Egusa. 1973. Edwardsiella tarda (Paracolobactrum anguillimortiferum) associated with pond-cultured eel disease. Bull. Jpn. Soc. Sci. Fish. 39, 931-936. https://doi.org/10.2331/suisan.39.931
  28. Yamaji, R., E. Chatani, N. Harada, K. Sugimoto, H. Inui, and Y. Nakano. 2005. Glyceraldehyde-3-phosphate dehydrogenase in the extracellular space inhibits cell spreading. Biochim. Biophys. Acta. 1726, 261-271 https://doi.org/10.1016/j.bbagen.2005.07.013