

Journal of Information Processing Systems, Vol.6, No.4, December 2010 DOI : 10.3745/JIPS.2010.6.4.597

597

A Dynamic Approach to Estimate Change Impact
using Type of Change Propagation

Chetna Gupta*, Yogesh Singh** and Durg Singh Chauhan***

Abstract—Software evolution is an ongoing process carried out with the aim of
extending base applications either for adding new functionalities or for adapting software
to changing environments. This brings about the need for estimating and determining the
overall impact of changes to a software system. In the last few decades many such
change/impact analysis techniques have been developed to identify consequences of
making changes to software systems. In this paper we propose a new approach of
estimating change/impact analysis by classifying change based on type of change
classification e.g. (a) nature and (b) extent of change propagation. The impact set
produced consists of two dimensions of information: (a) statements affected by change
propagation and (b) percentage i.e. statements affected in each category and involving
the overall system. We also propose an algorithm for classifying the type of change. To
establish confidence in effectiveness and efficiency we illustrate this technique with the
help of an example. Results of our analysis are promising towards achieving the aim of
the proposed endeavor to enhance change classification. The proposed dynamic
technique for estimating impact sets and their percentage of impact will help software
maintainers in performing selective regression testing by analyzing impact sets regarding
the nature of change and change dependency.

Keywords—Change Impact Analysis, Regression Testing, Software Maintenance, Software
Testing

1. INTRODUCTION
Software evolution is an on-going process which moves towards enhancement of existing

software systems, involving both development and maintenance. Software systems are mainly
changed due to new requirements and technological changes which often lead to modification of
software systems. Studies indicate that 90% [1] of all software development is maintenance and
more than 50% of the total maintenance cost of software lies in rework i.e. in changing the soft-
ware [2, 3].

Change management, impact analysis (IA) and regression testing are the three main steps in
the maintenance process. The software maintenance process can only be optimized if precise
and unambiguous information is available about the potential ripple effects of a change to an
existing system. Making changes to software without an understanding and knowledge of soft-

Manuscript received July 15, 2010; first revision November 4, 2010; accepted November 9, 2010.
Corresponding Author: Chetna Gupta
* Dept. of Computer Science and Engineering/ Information Technology, Jaypee Institute of Information Technology,

Noida, India (chetnagupta04 @gmail.com)
** University School of Information Technology, Guru Gobind Singh Indraprastha, University, Kashmere gate, Delhi,

India (ys66@rediffmail.com)
*** Uttarakhand Technical University, Dehradun, India (pdschauhan@gmail.com)

Copyright ⓒ 2010 KIPS (ISSN 1976-913X)

A Dynamic Approach to Estimate Change Impact using Type of Change Propagation

598

ware components can produce disastrous effects [4] and can lead to degraded software. As a
result the need arises for software maintainers to estimate the kinds of impact a change may
cause. However, identification of these changes is not an easy task as any modification in one
part of software may have subsequent ripple effects on other related components within the
software. Thus calculating ripple effects before or after making changes is valuable in identify-
ing the potential impact of a possible change. If done in a proactive manner i.e. before the
changes are made it can be helpful in predicting the effects of the proposed changes in terms of
their affect on the overall system and the corresponding costs while simultaneously providing the
maintainer the option to select various alternatives. On the other hand, if applied after modifica-
tions, it can help in reducing the risks associated with releasing modified software by alerting engi-
neers to potentially affected program components. Software change impact analysis, often called
simply impact analysis, is a family of approaches for addressing these problems [4-8]

Impact Analysis is defined in the IEEE Standard for Software Maintenance [9] as “impact
analysis: Identifies all system and software products that a change request affects and develops
an estimate of the resources needed to accomplish the change. This includes determining the
scope of the changes to plan and implement work, accurately estimating the resources needed to
perform the work, and analyzing the requested change’s cost and benefits.”

Although impact analysis has its natural place in requirement engineering as changes to software
often are initiated by changes in requirements, ironically the research related to impact analysis is
more commonly found in software maintenance literature. IA can also be viewed as an integral
part of every phase of software development; for instance during requirements development, de-
sign, coding and implementation. Any demand or requirement for new and various requirements
have an effect on existing requirements which leads to changes in design and code.

The primary goal of impact analysis is to identify software objects affected (or possibly af-
fected) by proposed changes. With knowledge of these identified affected objects the software
maintainer can construct resource estimates that can be used to guide maintenance activities.
Impact analysis has three primary benefits for a software maintainer: improved accuracy of re-
source estimates, and thus better maintenance scheduling and reduced change costs; a reduction
in the amount of corrective maintenance because of fewer introduced errors and improved soft-
ware quality [10].

In this paper, we propose a new approach for estimating change impact analysis (CIA) based
on change classification, which will not only estimate the impact of change to an overall system
but at the same time will provide information regarding the nature of the change(s) and the cor-
responding affected set of statements and their percentage of impact. The software maintainer
can then use this information to perform selective regression testing. The main contribution of
this work is as follows:

·A novel change classification system to classify run time data into four categories in order

to determine the nature of a change or changes and to measure the impact propagation on a
software system

·An algorithm to categorize and to collect impact sets based on classification.

These contributions are helpful in estimating the impact of such changes thereby aiding in se-

lecting useful test cases for regression testing.
The remainder of this paper is organized as follows: In the next section, related work is pre-

Chetna Gupta, Yogesh Singh and Durg Singh Chauhan

599

sented. We describe our proposed classification system, framework and algorithm in section 3.
In section 4 we present some experimental results of our proposed scheme, section 5 presents
application of the proposed work and finally section 6 presents the conclusion.

2. RELATED WORK
When planning modifications, impact analysis helps maintainers to predict effects and costs

of planned changes. These Impact Analysis techniques are broadly classified into (1) Static im-
pact analysis techniques and (2) Dynamic impact analysis techniques. The next section provides
a brief overview of these two categories.

2.1 Brief Overview of Static Impact Analysis

Static impact analysis is a technique used to analyze a software system without actually exe-
cuting the source code. In most cases static analysis is performed on some version of source
code and in other cases some form of object code. Decades of research have shown that static
analysis based techniques can safely estimate the impact of changes but their conservative as-
sumptions often result in impact sets that include most of the software. In some cases the impact
set produced includes more than 90% of the program [11]. Such impact sets make the results of
the impact analysis almost useless for other software-engineering tasks. For example, regres-
sion-testing techniques that use impact analysis to identify which parts of the program to retest
after a change would have to retest most of the program. Static IA techniques listed in literature
are further partitioned into two types: (a) traceability analysis and (b) dependency analysis.
Traceability analysis techniques calculate static impact set by tracing the software development
cycle from software requirements through design, code and testing. Dependency based analysis
techniques [2, 5-7, 12-19] works on the principle of analyzing program syntax for semantic de-
pendencies among program entities such as linkages between parts, variables, logic, modules,
thereafter it calculates impact sets according to dependencies. A brief summary of a comparison
between these techniques is provided in [20].

As stated above, a static impact analysis requires access to source code and thus the calcula-
tion of impact set is based on a static program profile synthesized with assumptions of possible
system behaviors. Hence, this type of analysis technique is either imprecise, unsafe, or both, and
tends to overestimate the effects of changes. Thus, the results of a static IA are hardly useful for
software engineering tasks.

The problem with static analysis based approaches can be divided into two. Firstly, they con-
sider all possible behaviors of the software, whereas, in practice, only a subset of such behaviors
may be exercised by the users. Secondly, and more importantly, they also consider some impos-
sible behaviors, due to the imprecision of the analysis. Therefore, recently, researchers have
investigated and defined impact-analysis techniques that rely on dynamic, rather than static,
information about program behavior [20-22]

2.2 Brief Overview of Dynamic Impact Analysis

The main aim of dynamic impact analysis is to analyze a software system by gathering pro-
gram behaviors attained by executing programs on a real or virtual processor. It gathers impact

A Dynamic Approach to Estimate Change Impact using Type of Change Propagation

600

sets by analyzing program behaviors for a specific set of executions (at least one of the consid-
ered program executions) during run time (i.e. data is obtained from executing a program). Dy-
namic IA does not require access to source code or linking process. Instrumentation and calcula-
tion of dynamic IA cause overhead in both time and space and results produced are much more
precise than those produced by static impact analysis techniques. Various techniques mentioned
in literature are based on collecting impact sets of dynamic program behavior. [20] Performs at
the method level, based on whole path profiling [23]. It produces traces of procedure names,
function returns and program exits in the order in which they occur in multiple executions. [22]
Is an extension of [20] that allows an algorithm to collect data incrementally so that it becomes
cost effective to re-compute (i.e. re-collect) data required for newer versions of the software.
[11] Uses light weight instrumentation and collects coverage information of methods per execu-
tions. It also works at the method level, but uses coverage, rather than trace, information to
compute impact sets. The coverage information for each execution is stored in a bit vector that
contains one bit per method in the program. The comparison of [20] and [11] is given in [24].
The generic approach of [25] is based on an EA (execute after) relation for efficiently collecting
and analyzing collected information dynamically. This method is based on identifying all pro-
gram entities that are executed after e, where e is the set of executions for some procedure p in
the considered program execution. Therefore, it computes a binary relation for each pair of enti-
ties e1 and e2 in P, where e2 is executed after e1 in any of executions in E. In other words, it
finds all those methods that are executed after changed methods. The impact set produced is
thereby a union of methods executed after any changed methods in all executions considered.
[26] Calculates impact sets by finding methods that are executed after methods in a changed set
and includes them in the impact set. [27] Proposes a methodology for determining the impact of
new system modification(s) by analyzing software change records through singular value de-
composition. It generates clusters of files that historically tend to change together to address
faults and failures found in code base. [28] Proposes a novel change impact analysis method
based on the idea of mutual relationships between software objects that can be inferred using a
statistical learning approach.

On the other hand if applied online, it can calculate impact sets concurrently with program
execution [29]. Online dynamic impact analysis has the same goal as dynamic impact analysis,
but online impact analysis is performed concurrently with program execution rather than calcu-
lating impact sets from executing a program. [30] Presents a technique based on analysis of pro-
gram dependency in terms of variable definition and usage to generate impact sets. [31] Pro-
vides framework for collecting impact traces completely online and it also provides support for
impact visualization for regression testing.

The focus of this research is to gather data for impact sets dynamically i.e. on executing the
program as compared to static impact analysis techniques. Unlike other techniques it computes
impact sets by tracing change and then classifying it into proposed categories to help software
maintainers understand the nature (type) of change and its impact and propagation. It will also
assist in selecting only those test cases which fall into those categories for regression testing.

3. BASIC METHOD AND PROPOSED APPROACH
This section describes our approach for classifying the type of change and its impact on (in-

Chetna Gupta, Yogesh Singh and Durg Singh Chauhan

601

troduction of any change in) software. This technique takes into account both change (type) and
its ripple effects on the system by storing change propagation during execution. The impact sets
are generated in terms of affected statements and percentage of change impact. To discuss the
presented approach in detail we first explain the proposed classification system adopted for our
framework followed by discussion of the framework itself. Next we explain the algorithm which
implements the technique followed by data collection and result observation of the overall tech-
nique.

3.1 Proposed Classification System

We propose a classification system that classifies the change (∆x) of any form (i.e. changes
made due to new requirements or technological changes) made to software systems into the fol-
lowing four categories.

(a) Functional Change Impact: It is defined as any functional change (∆f) in some function x

(fun (x)) by adding, deleting or modifying statements may directly or indirectly propagate
its impact to other related functions of a program. These changes can therefore be classified
as functional changes.

(b) Logical Change Impact: It is defined as any change (addition, deletion or modification) that
corresponds to a change in logic or decision in program code. It is based on a representation
of control flow graph (CFG) and therefore any logical change (∆l) in the decision flow of
the control flow graph implies that it can propagate its affect in the system accordingly. A
CFG is a graph notation (diagrammatic representation) of a program and its execution
which represents all possible sequences of statements of a program. It is a directed graph
with vertices and edges where vertices are statements and edges represent flow of control. It
consists of a start node, an end node and flows (or arcs) between nodes. Each node is la-
beled in order for it to be identified and associated correctly with its corresponding part in
program code. The nodes are either entire statements or fragments of a statement and edges
represent flow of control. If i and j are nodes in the program graph, there is an edge from
node i to node j if the statement (fragment) corresponding to node j can be executed imme-
diately after the statement (fragment) corresponding to node i [32]. Logical change impact
connects mostly intra-components which can lead to functional and behavioral change also.

(c) Structural Change Impact: It is defined as any structural modification in a software system:
(a) an addition of a new piece of code in an already existing program or the combining of
two programs into one (b) deletion of some already existing code due to splitting of a pro-
gram into two programs or deletion of a piece of code from a software program.

(d) Behavioral Change Impact: It is defined as any change in behavior of a program (∆b) com-
ponent that can cause a potential change in behavior of related components. A behavior of a
program describes the execution order of activities including decision making, entry and
exit criteria of a program. The aim of estimating this type of change is to simply make sure
that the output complies with the requests of the system.

3.2 Proposed Framework for Change Impact Analysis

The framework presented firsts highlights changed areas by comparing two source codes line
by line and later uses classification results to estimate impact of changes thereby calculating its

A Dynamic Approach to Estimate Change Impact using Type of Change Propagation

602

percentage of impact to pin point irregularities in a straightforward manner. The whole process
is explained with its main components (shown in bold dotted line) in Fig. 1.

(a) Graphical User Interface: is a user friendly interface to provide easy access to users for up-

dating two versions of the program. It interacts with a compiler and stores results of the
comparison of both programs in database 1.

(b) Database 1 (DB1): stores execution history and the control flow graph of two versions of a
program for analyzing two versions of code.

(c) Classifier: reads the analyzer and classifies data (using an algorithm) according to the clas-
sifications provided in section 3.1. We use the following formulae to calculate the percent-
age of impact:

programainstatementsofnumberTotal
propagatedhaschangewherestatementsofnumberTotal

 change of Percentage = (1)

(d) Database 2 (DB2): stores results of classification obtained from the classifier for analysis.

3.3 Algorithm

The algorithm presented in Fig. 2 classifies comparison information to generate dynamic im-
pact sets. To calculate Functional Change Impacts we create a control flow graph of a program
and analyze connectivity of changed statement(s) to other statements defined in other functions
of a program. It adds all those statements which are changed and has a direct impact on other
statements of related functions of a program to compute impact set. To calculate Logical Change
Impacts it analyzes all those statements in a CFG where there is a change in logic or decision in
program code. It adds all those statements whose logic has been changed and all those state-
ments which are related to those statements in terms of dependency (either by definition or us-
age) to compute an impact set. To calculate Structural Change Impacts made to the code it finds
all those statements which have been added or deleted to and from the original code. To calcu-
late Behavioral Change Impacts it adds all those statements to impact sets where there is any
change in behavior of the program from the original one.

Fig. 1. Framework for Visualization of Change Impact Analysis

Chetna Gupta, Yogesh Singh and Durg Singh Chauhan

603

4. DATA COLLECTION AND RESULT OBSERVATION

The following steps were followed for collection of relevant data in this study:

(a) There are two versions of each program: the original and the modified.
(b) Then the two source codes are uploaded in a graphical user interface for comparisons and

their execution history (table of results of comparison) and CFG are stored in a database.
(c) We then apply the proposed technique, i.e. procedure to classify the nature of change and

equation (1) to calculate percentage of impact.

Fig. 2. Algorithm

Fig. 3. Program 1 Fig. 4. Program 2

A Dynamic Approach to Estimate Change Impact using Type of Change Propagation

604

This result will then be used by the software maintainer(s) to predict the impact of introducing
a change. To validate the presented techniques and to assess the usefulness of classifying the
type of change and calculation of percentage of change introduced for impact analysis and re-
gression testing, we performed a set of empirical studies. We explain the whole process of col-
lecting the traces with the help of the following example given in Fig. 3 and Fig. 4.

4.1 Database 1

It stores a table of comparison and corresponding CFG of two versions of code. It generates a
table of comparison by comparing two source codes line by line to examine the differences be-
tween two pieces of code. The result of the comparison is depicted in Table 1 where in the sign
column the equal to sign (=) means two lines are similar in program 1 and program 2 (b) the
subtraction sign (-) means the line has either been deleted or it does not exist in other source
code; the addition sign (+) means a new line of code has been added. In column 3 and 5 the (--)
sign means statements are missing in the other program.

4.2 Classifier

Now the classifier will read Table 1 from the database and will classify the information using
the proposed algorithm and four categories.

The algorithm will trace the change propagation and according to the defined categories it
will classify change propagation for each category. The impact sets for each category consists of

Table 1. Result of comparison stored in DB1

Sign Line No Program 1 Line No Program 2
= 1 int sum(int *a, int s){ 1 int sum(int *a, int s){
= 2 int sm=0, I; 2 int sm=0, I;
- 3 for(i=0;i<s; i++) -- --
- 4 { -- --
- 5 if(a[i]<0) -- --
- 6 a[i]=-a[i]; -- --
- 7 sm + = a[i]; -- --
+ -- -- 3 for(i=1;i<=s; i++)
+ -- -- 4 {
+ -- -- 5 sm + = a[i-1];
= 8 } 6 }
- 9 return sm; 7 return sm;--
= 10 } 8 }
= 11 int avg(int *a, int s){ 9 int avg(int *a, int s){
= 12 int av, sm; 10 int av, sm;
+ 11 input(a, s);
= 13 sm = sum(a, s); 12 sm = sum(a, s);
= 14 av = sm/s; 13 av = sm/s;
= 15 return av; 14 return av;
+ -- -- 15 }
+ -- -- 16 input(int *a, int s) {
+ -- -- 17 for(int I =0;i<s;i++)
+ -- -- 18 scanf(“%d”, &a[i]);
+ -- -- 19 }

Chetna Gupta, Yogesh Singh and Durg Singh Chauhan

605

a collection of affected nodes. For example, there is change in line number 3 of program 1,
where i<s is changed to i<=s. On tracing this change it can be seen that it has potential effect on
lines number 5, 7, 12, 13 and 14 of program 2. According to the classification defined in section
3.1, it is clear that this change contributes to three different categories at the same time, namely
functional change, logical change and structural change. Table 2 provides the list of affected
statements for each category along with the percentage of change impact computed using formu-
lae given in equation 1. To estimate impact of change on the overall system it summarizes the
data in Table 3 which provides the list of affected statements for change propagation of the
overall system.

Results of Table 2 and 3 can be used by the software maintainer(s) to estimate impact of
change by analyzing the type of change, namely Functional Change Impact, Logical Change
Impact, Structural Change Impact and Behavioral Change Impact and total number of state-
ments in a program where change has propagated. Fig. 5 above represents analysis of impact of

Table 2. Classification results obtained by classifier

Type of change Actual change Statements where change has
propagated

Impact of
Change

Functional Change
Impact <deleted line 3, 4, 5, 6 in P1> 5, 7, 12, 13, 14 26.32%

Logical Change
Impact 3 5, 7, 12, 13, 14 26.32%

Structural Change
Impact 11, 16, 17, 18 3, 5, 7, 12, 13, 14 31.58%

Behavioral Change
Impact 5 7, 12, 13, 14 21.05%

Table 3. Result analysis for overall system

 Affected Line No Percentage of total change impact on overall system
Total statements

affected
3, 5, 6, 7, 11, 12, 13, 14,

16, 17, 18 57.89%

57.89

26.32

57.89

26.32

57.89

31.58

57.89

21.05

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Pe
rc

en
at

ag
e

Type of Change

Total Change Impact (%) 57.89 57.89 57.89 57.89

Change Impact by each
category (%)

26.32 26.32 31.58 21.05

1 2 3 4

Fig. 5. Summary of percentage of impact of change: where 1 represents total change impact vs

Functional Change Impact, 2 represents total change impact vs. Logical Change Impact,
3 represents total change impact vs. Structural Change Impact and 4 represents total
change impact vs. Behavioral Change Impact

A Dynamic Approach to Estimate Change Impact using Type of Change Propagation

606

change on the overall system. It can be noted here that the sum percentage change of each the
classification categories is more than 100%; this is because of overlapping statements (occur-
rence of more than one statement) in each category. The results of our experiment show that this
technique can efficiently classify information into defined categories and hence can reduce the
time and cost of software maintenance tasks. This will assist in selective regression testing as it
will help software testers to choose only those test cases where the actual change and its impact
has propagated from the old test suite to be executed on the modified version of software. It will
serve in establishing confidence in modified programs thereby increasing levels of customer
satisfaction. Also it will benefit in saving time and cost of software maintenance work as experi-
ences have shown how a small change can adversely affect software if its impact is not under-
stood properly.

5. APPLICATION OF PROPOSED WORK
Software practitioners may use the presented technique to analyze details of a particular im-

pact propagated by an introduction of change to a software system. The proposed approach sup-
ports software practitioners by (a) providing knowledge of the nature of change(s) (b) providing
knowledge of all other parts that are affected by a change propagation (c) providing measure-
ment of impact on various parts of program. This technique may lead to greater savings of time
and cost of maintenance labor. The application of this work may improve the quality, reliability,
and effectiveness of the code, which may, in turn, increase the level of customer satisfaction.

6. CONCLUSION
In this paper we have presented a new approach for change impact analysis to predict the per-

centage impact of change through a change classification for software systems. The proposed
technique first computes comparison results in two versions of program and then classifies the
obtained results using the type of change classification proposed in section 3.1. The results are
promising in achieving effectiveness and efficiency of the technique, by (a) classifying the na-
ture of change (b) estimating impact percentage of change(s) to the overall software system (b)
estimating impact sets in terms of affected statements and percentage of such changes on the
overall system and (c) assisting software maintainers in performing selective regression testing
by analyzing results produced by our classification algorithm.

REFERENCE
[1] R. C. Seacord, D. Plakosh, G. A. Lewis, “Modernizing Legacy Systems: Modernizing Legacy Sys-

tems: Software Technologies, Engineering Processes, and Business Practices,” Addison-Wesley,
2003.

[2] M. Lee, A. J. Offutt, R.T. Alexander, “Algorithmic Analysis of the Impacts of Changes to Object-
oriented Software,” The Technology of Object-Oriented Languages and Systems, 2000, pp.61.

[3] G. J. Myres, “Art of Software Testing,” John Wiley & Sons, New York, 1979.
[4] S. Bohner and R. Arnold, “Software Change Impact Analysis,” Proceedings of IEEE Computer Soci-

ety Press, Los Alamitos, CA, USA, 1996.
[5] R. S. Arnold, S. A. Bohner, “Impact analysis - towards a framework for comparison,” Proceedings of

IEEE International Conference on Software Maintenance, Montreal, Que, Can, September, 1993,

Chetna Gupta, Yogesh Singh and Durg Singh Chauhan

607

pp.292-301.
[6] J. P. Loyall, S. A. Mathisen, C. P. Satterthwaite, “Impact analysis and change management for avion-

ics software,” Proceedings of IEEE National Aerospace and ElectronicsConference, Part 2, Dayton,
OH, July, 1997, pp.740-747.

[7] S. L. Pfleeger, “Software Engineering: Theory and Practice,” Prentice Hall, Englewood Cliffs, NJ,
1998.

[8] R. J. Turver, M. Munro, “Early impact analysis technique for software maintenance,” Journal of
Software Maintenance: Research and Practice, 6(1):35-52, January, 1994.

[9] International Standard - ISO/IEC 14764 IEEE Std 14764-2006, IEEE Standard for Software Mainte-
nance, IEEE Computer Society.

[10] R. Moreton, “A process model for software maintenance,” Journal of Information Technology, 5:100-
104, 1990.

[11] Orso, T. Apiwattanapong, M. J. Harrold, “Leveraging field data for impact analysis and regression
testing”, Proceedings of the ACM SIGSOFT Symposium on Foundations of Software Engineering,
September, 2003, pp.128-137.

[12] B. G. Ryder, F. Tip, “Change impact analysis for object oriented programs”, Proceedings of the ACM
Workshop on Program Analysis for Software Tools and Engineering, October, 2001, pp.46-53.

[13] L. C. Briand, Y. Labiche, L. O’Sullivan, “Impact Analysis and Change Management of UML Mod-
els”, Proceedings of the International Conference on Software Maintenance (ICSM’03), 2003.

[14] M.Weiser, “Program slicing”, Proceedings of 5th IEEE International Conference on Software Engi-
neering, San Diego, CA, March, 1981, pp.439-49.

[15] H. Agrawal, J. Horgan, “Dynamic program slicing”, Proceedings of SIGPLAN ’90 Conference on
Programming Language Design and Implementation. SIGPLAN Notices., White Plains, June, 1990,
ACM, pp.246-56.

[16] S. Horwitz, T. Reps, D. Binkley., “Interprocedural Slicing Using Dependence Graphs”, ACM Trans.
Prog. Lang. Syst., Vol.12(1), January, 1990, pp.27-60.

[17] M. Kamkar, “An Overview and Comparative Classification of Program Slicing Techniques”, Journal
of Systems Software, Vol.31(3), 1995, pp.197-214.

[18] B. Korel, J. Laski, “Dynamic slicing in computer programs”, Journal of Systems Software, Vol.13(3),
1990, pp.187-95.

[19] L. Li, A. J. Offutt, “Algorithmic analysis of the impact of changes to object-oriented software”, Pro-
ceedings of IEEE International Conference on Software Maintenance, Monterey, CA, USA, Novem-
ber, 1996, pp.171-184.

[20] J. Law, G. Rothermel, “Whole program path-based dynamic impact analysis”, Proceedings of the
International Conference on Software Engineering, May, 2003, pp.308-318.

[21] B. Breech, A. Danalis, S. Shindo, L. Pollock., “Online impact analysis via dynamic compilation
Technology”, Proceedings of the International Conference of Software Maintenance, September,
2004.

[22] J. Law, G. Rothermel, “Incremental dynamic impact analysis for evolving software systems”, Pro-
ceedings of the International Symposium on Software Reliability Engineering, November, 2003.

[23] J. Larus. Whole Program Paths. In Proc. SIGPLAN PLDI 99, Atlanta, GA, May, 1999. ACM, pp.1-11.
[24] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, M. J. Harrold, “An empirical comparison of

dynamic impact analysis algorithms”, Proceedings of the International Conference on Software Engi-
neering, May, 2004, pp.491-500.

[25] T. Apiwattanapong, A. Orso, M. J. Harrold, “Efficient and Precise Dynamic Impact analysis using
Execute-After Sequences”, Proceeding of ACM- International Conference on Software Engineering
(ICSE), St. Louis, Missouri, USA, 2005.

[26] L. Huang, Dr. Y.T. Song, “Dynamic Impact Analysis Using Execution Profile Tracing”, Proceedings
of the Fourth International Conference on Software Engineering Research, Management and Applica-
tions (SERA), 2006.

[27] M. Sherriff, L. Williams, “Empirical Software Change Impact Analysis using Singular Value De-
composition”, Proceedings of 1st IEEE International Conference on Software Testing, Verification,
and Validation (ICST), 2008.

[28] M. Ceccarelli, L. Cerulo, G. Canfora, M. D. Penta "An Eclectic Approach for Change Impact Analy-
sis,” Proceedings of International Conference on Software Engineering (ICSE), 2010.

[29] B. Breech, M. Tegtmeyer, L. Pollock, "A Comparison of Online and Dynamic Impact Analysis Algo-
rithms,” Proceedings in Ninth European Conference on Software Maintenance and Reengineering
(CSMR'05), 2005.

A Dynamic Approach to Estimate Change Impact using Type of Change Propagation

608

[30] C. Gupta, Y. Singh, D. S. Chauhan, “An Efficient Dynamic Impact Analysis using Definition and
Usage Information”, International Journal of Digital Content Technology and its Applications, Vol.3
(4), 2009, pp.112-115.

[31] C. Gupta, Y. Singh, D. S. Chauhan, “DU-Regs: Online Dynamic Approach to Visualize Impact Anal-
ysis for Regression Testing”, International Journal of Computer Applications, Vol.1(19), 2010, pp.8-
11.

[32] K.K. Aggarwal, Y. Singh, “Software engineering,” Third edition, New Age International Publishers,
New Delhi, 2008.

Chetna Gupta
She is a Senior lecturer at Jaypee Institute of Information Technology, India. She
holds a Masters of Technology and a Bachelor of Engineering degree in Com-
puter Science and Engineering. Her areas of interest are Software Engineering,
Requirement Engineering, Software Testing, Software Project Management,
Data Structures and Web Applications. She has many publications in interna-
tional journals and conferences to her credit. Currently she is pursuing her Ph.D.
in Software Testing.

Yogesh Singh
He received his master’s degree and Ph.D. degree in Computer Engineering
from National Institute of Technology, Kurukeshtra, India. He is a professor in
University School of Information Technology (USIT), Guru Gobind Singh Indra-
prastha University, Delhi, India. His research interests include software engineer-
ing focusing on the area of Software project planning, Testing, Metrics, Data
Structures, Computer Architecture, Parallel Processing and Neural Networks. He
is also a Controller of Examinations with the Guru Gobind Singh Indraprastha

University. He was founder Head and dean of the University School of Information Technology of Guru
Gobind Singh Indraprastha University. He is co-author of a book on software engineering, and is a
Fellow of IETE and member of IEEE. He has more than 200 publications in international and national
journals and conferences.

Durg Singh Chauhan
He received a Ph.D. degree from Indian Institute of Technology (IIT) Delhi in
1986, India and did his post doctoral work at Goddard space Flight Centre,
Greenbelf Maryland. USA (1988-91). He is a Vice-Chancellor of Uttarakhand
Technical University, Dehradun, India. Prior to this he also served as Vice-
Chancellor in three other universities in India. He has been a member of the
University Grant Commission (UGC), National Board of Accreditation (NBA) -
executive, All India Council for Technical Education (AICTE), Council for Ad-

vancement of People's Action and Rural Technology (CAPART), National Accreditation Board for Test-
ing and Calibration Laboratories (NABL) - Department of Science and Technology (DST) executive and
member, National expert Committee for IIT- (National Institute of Technology) NIT research grants. He
has authored two books and published and presented more than 115 research papers in international
journals and international conferences and wrote more than 20 articles on various topics in national
magazines. He has delivered hundreds of lectures in U.S. and Canadian universities.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

