DOI QR코드

DOI QR Code

Comparison of the Family Based Association Test and Sib Transmission Disequilibrium Test for Dichotomous Trait

이산형 형질에 대한 가족자료 연관성 검정법 FBAT와 형제 전달 불균형 연관성 검정법 S-TDT의 비교

  • Kim, Han-Sang (Department of Biostatistics, Graduate School, The Catholic University of Korea) ;
  • Oh, Young-Sin (Department of Biostatistics, Graduate School, The Catholic University of Korea) ;
  • Song, Hae-Hiang (Department of Biostatistics, Graduate School, Integrated Research Center for Genome Polymorphism, The Catholic University of Korea)
  • 김한상 (가톨릭대학교 대학원 의학통계학과) ;
  • 오영신 (가톨릭대학교 대학원 의학통계학과) ;
  • 송혜향 (가톨릭대학교 대학원 의학통계학과, 인간유전체다형성 연구소)
  • Received : 20100800
  • Accepted : 20101000
  • Published : 2010.12.31

Abstract

An extensively used approach for family based association test(FBAT) is compared with the sib transmission/disequilibrium test(S-TDT), and in particular the adjusted S-TDT, in which the covariance among related siblings is taken into consideration, can provide a more sensitive test statistic for association. A simulation study comparing the three test statistics demonstrates that the type I error rates of all three tests are larger than the prespecified significance level and the power of the FBAT is lower than those of the other two tests. More detailed studies are required in order to assess the influence of the assumed conditions in FBAT on the efficiency of the test.

광범위하게 사용되는 가족자료에 근거한 연관성 검정법 FBAT를 형제 전달 불균형 연관성 검정법 S-TDT와 비교하였고, 특히 형제간의 공분산을 고려한 분산추정량을 사용한 수정 S-TDT로써 유전연관성의 정도가 다른 가족자료가 검정통계량값으로 구분될 수가 있다. 모의실험으로 세 검정법을 비교한 결과, 형제의 표현형 자료가 서로 독립이 아닌 경우에 세 검정법 모두의 제 1종 오류가 정해진 유의수준보다 커지며, 또한 FBAT의 검정력이 S-TDT와 수정 S-TDT의 검정력에 미치지 못한다. FBAT 검정법에서 가정하는 조건이 검정법의 효율성에 미치는 영향을 더욱 심도있게 평가하는 연구가 요구된다.

Keywords

References

  1. 오영신, 김한상, 송혜향 (2010). 형제자료에 근거한 유전연관성 추세 검정법의 비교, <응용통계연구>, 23, 845– 855. https://doi.org/10.5351/KJAS.2010.23.5.845
  2. Horvath, S., Xu, X. and Laird, N. M. (2001a). The family based association test method: Strategies for studying general genotype-phenotype associations, European Journal of Human Genetics, 9, 301–306.
  3. Horvath, S., Xu, X. and Laird, N. M. (2001b). The Family Based Association Test Method: Computing Means and Variances for General Statistics, Technical report.
  4. Laird, N. M., Horvath, S. and Xu, X. (2000). Implementing a unified approach to family based tests of association, Genetic Epidemiology, 19, S36–42. https://doi.org/10.1002/1098-2272(2000)19:1+<::AID-GEPI6>3.0.CO;2-M
  5. Lange, C. and Laird, N. M. (2002). Power calculations for a general class of family-based association tests: Dichotomous traits, American Journal of Human Genetics, 71, 575–584.
  6. Li, C. C. and Sacks, L. (1954). The derivation of joint distribution and correlation between relatives by the use of stochastic matrices, Biometrics, 10, 347–360.
  7. Mantel, N. and Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease, Journal of the National Cancer Institute, 22, 719–748.
  8. Rabinowitz, D. and Laird, N. (2000). A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information, Human Heredity, 50, 211–223.
  9. Sherrington, R., Brynjolfsson, J., Petursson, H., Potter, M., Dudleston, K., Barraclough, B., Wasmuth, J., Dobbs, M. and Gurling, H. (1988). Localization of a susceptibility locus for schizophrenia on chromosome 5, Nature, 336, 164–167. https://doi.org/10.1038/336164a0
  10. Slager, S. L. and Schaid, D. J. (2001). Evaluation of candidate genes in case-control studies: A statistical method to account for related subjects, American Journal of Human Genetics, 68, 1457–1462.
  11. Spielman, R. S. and Ewens, W. J. (1998). A sibship test for linkage in the presence of association: The sib transmission/disequilibrium test, American Journal of Human Genetics, 62, 450–458.