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Abstract

In this paper we discuss some cautionary notes in using the Pearson chi-squared test statistic for the goodness-

of-fit of the ordinal response model. If a model includes continuous type explanatory variables, the resulting

table from the fit of a model is not a regular one in the sense that the cell boundaries are not fixed but

randomly determined by some other criteria. The chi-squared statistic from this kind of table does not have

a limiting chi-square distribution in general and we need to be very cautious of the use of a chi-squared type

goodness-of-fit test.

We also study the limiting distribution of the chi-squared type statistic for testing the goodness-of-fit of cu-

mulative logit models with ordinal responses. The regularity conditions necessary to the limiting distribution

will be reformulated in the framework of the cumulative logit model by modifying those of Moore and Spruill

(1975). Due to the complex limiting distribution, a parametric bootstrap testing procedure is a good al-

ternative and we explained the suggested method through a practical example of an ordinal response dataset.

Keywords: Ordinal response data, cumulative logit model, goodness-of-fit test, ordinal scores, random

table, limiting distribution, parametric bootstrap.

1. Introduction

The chi-squared statistic is usually used for testing the goodness-of-fit of a model, for example the

independence of two variables in a dataset given by contingency table. In the generalized linear

model (that includes the loglinear model and logistic regression model) the Pearson chi-squared

statistic and the deviance statistic are given by the common statistical packages. However, these

measures are sometimes inappropriate for assessing the goodness-of-fit of the logistic regression

model having continuous type explanatory variables because of the sparseness of the resulting table.

The Hosmer-Lemeshow test for the goodness-of-fit of binary logistic regression model is a popular

one suggested by Hosmer and Lemeshow (1980). This test statistic has the form of a Pearson chi-

squared statistic which is computed from a g × 2 random table, where g is the levels of subgroups

determined by the predicted probabilities. As studied by Hosmer and Lemeshow (1980), this kind

of Pearson chi-squared statistic based on the random cell boundaries depends on the estimated
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parameters and hence it does not have the regular limiting chi-squared distribution. Through an

extensive Monte Carlo study Hosmer and Lemeshow (1980) showed that the test statistic can be

approximated by chi-squared distribution with g − 2 degrees of freedom. Graubard et al. (1997)

proposed an alternative grouping strategy for establishing a table using deciles of risk for the

Hosmer-Lemeshow goodness-of-fit test. Other goodness-of-fit tests for logistic regression models

have been proposed by other researchers such as Cox (1958), Tsiatis (1980), Brown (1982), Su and

Wei (1991), Osius and Rojek (1992), Pigeon and Heyse (1999 a,b).

In this paper we focus our attention to the goodness-of-fit of an ordinal response model which can

be an extension of a logistic regression model. The ordinal response data has become increasingly

common in many areas such as biomedical and health sciences. Pulkstenis and Robinson (2004)

already proposed a chi-squared type statistic by forming a table using the ordinal scores and the

patterns of categorical covariates. However, the requirement of both types of categorical and con-

tinuous covariates in the model is a weakness of the test by Pulkstenis and Robinson (2004) even

though it can simply be approximated by a chi-square distribution with appropriate degrees of

freedom. Because the ordinal response model has r response categories we consider a linear com-

bination of the response probabilities which is the so called ordinal scores by Lipsitz et al. (1996).

We partition the whole subjects into g subgroups using the these ordinal scores, which results in a

g × r cross-classified table. We routinely compute the chi-squared statistic from this g × r table to

perform the goodness-of-fit test for the assumed model.

A discussion on the limiting distribution of the chi-squared type statistic from the random table

was first introduced by Chernoff and Lehmann (1954), and later by other researchers such as

Moore (1971), Moore and Spruill (1975). Because its limiting distribution is generally represented

by a weighted sum of independent chi-squared random variates with one degrees of freedom, it

is a formidable task to use the limiting distribution directly. It leads us to consider alternative

approaches such as a bootstrap testing procedure to find the critical point of the test statistic.

In the recent work by Jeong et al. (2005) a bootstrap testing procedure was proposed to test the

independence of two-way ordinal tables in the respect of a power increase. Jeong and Lee (2009) also

proposed the chi-squared type test statistic and a bootstrapping procedure to check the goodness-

of-fit with misspecified link functions through a Monte Carlo study. But the limiting distribution of

the proposed test statistic has not been studied in the previous work by Jeong and Lee (2009). This

paper adresses the misuse of a chi-squared type statistic with a special emphasis on the limiting

distribution and its necessary conditions.

In Section 2, we briefly review the cumulative logit models for ordinal response data. In Section 3,

through an example we comment on the misuse of the usual chi-squared test when a model includes

continuous type explanatory variables. The proposed test statistic and its limiting distribution will

be discussed in Section 4. We modify the regularity conditions of Moore and Spruill (1975) in

the framework of the cumulative logit model to find the limiting distribution of the test statistic.

Finally, we summarize with comments on using chi-squared type tests for the goodness-of-fit of a

model.

2. Cumulative Logit Models

Let x = (x1, . . . , xp)
′ be a vector of explanatory variables. An explanatory variable is interchange-

ably called a predictor or covariate variable. Each xi can be continuous, categorical, or a mix of

both types. Sometimes the predictor variable is called a covariate. We denote the response variable
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by Y taking the integer values of 1 through r with respective probabilities πk(x), k = 1, 2, . . . , r,

satisfying
∑r
k=1 πk(x) = 1. Given a dataset consists of n observations (yi,xi), i = 1, 2, . . . , n, we

let P (Y ≤ j|xi) be a cumulative probability of ordinal responses smaller than or equal to j given

xi, which is defined by

P (Y ≤ j|xi) =
j∑

k=1

πk(xi), (2.1)

where j = 1, . . . , r − 1. From (2.1) each response probability πk(xi) can recursively be found as

πk(xi) = P (Y ≤ k|xi)− P (Y ≤ k − 1|xi), k = 2, . . . , r (2.2)

with π1(xi) = P (Y ≤ 1|xi). The cumulative logit model is defined as

log

[
P (Y ≤ j|x)

1− P (Y ≤ j|x)

]
= αj + βββ′

jx, j = 1, · · · , r. (2.3)

The left hand side of (2.3) is simply written as logit[P (Y ≤ j|x)]. In particular when the βββ′
js are

all equal to a common βββ, where βββ is a vector of β1, . . . , βp we obtain the so called proportional odds

model of the form

logit [P (Y ≤ j|x)] = αj + βββ′x. (2.4)

We note that the model (2.4) has the same effects βββ for each logit but each cumulative logit has

its own intercept αj satisfying α1 ≤ · · · ≤ αr−1. The proportional odds model constrains the r − 1

response curves to have the same shape. From (2.4) we find the cumulative probability in terms of

αk and βββ as

P (Y ≤ k|xi) =
exp(αk + βββ′xi)

1 + exp(αk + βββ′xi)
. (2.5)

Using the relationship (2.2) and (2.5) we note that the response probability πk(xi) is a function of

unknown parameters θθθ = (α1, . . . , αr−1, β1, . . . , βp)
′, which are routinely estimated by the maximum

likelihood method.

3. Chi-Squared Type Test Statistics

Suppose that a dataset is given in the form of l× r table, where l and r denote the levels of the row

and column variable, respectively. The goodness-of-fit of a model (for example the independence

of row and column variables) can be tested using the regular Pearson chi-squared statistic. The

Pearson chi-squared statistic is given by

X2 =

l∑
j=1

r∑
k=1

(njk − Ejk)
2

Ejk
, (3.1)

where nij and Ejk denote the observed frequency and the expected value of (j, k) cell under the

assumed model, respectively. If there are unknown parameters that should be estimated then we

also need to estimate Ejk. Hereafter we denote the estimated expected value as Êjk. The X2 is

known to have a limiting chi-squared distribution with appropriate degrees of freedom depending

on the model to be tested.
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Table 3.1. Dataset of mental impairment status

Life events
Mental status

Total
1 2 3 4

0 1 0 1 0 2

1 3 2 0 0 5

2 2 1 0 1 4

3 3 3 2 0 8

4 1 0 2 2 5

5 0 3 0 1 4

6 0 1 1 0 2

7 1 0 0 1 2

8 0 1 0 3 4

9 1 1 1 1 4

Total 12 12 7 9 40

3.1. An example of ordinal response data

The dataset of Table 3.1 given in Goodman (1979) and Agresti (2002) has been obtained from a

study of mental health for adult residents of Alachua County, Florida. Mental impairment can be

regarded as an ordinal response variable y with four categories; well, mild, moderate, and impaired.

In Table 3.1 mental status 1 denotes well and 2 denotes mild. Mental status is related to two kinds

of covariates, the one is life events and the other is socioeconomic status. The life events index

is a composite measure of the number and severity of important life events that happened to the

subject within the past 3 years. The socioeconomic status is measured as high or low. We note

that Table 3.1 is very sparse as we see so many cells of zero count. Sometimes the test statistic X2

gives missed result because of the inappropriateness of chi-square approximation.

Here we use only the life events index as a covariate in a model to be simple. Assume a cumulative

proportional odds model for this dataset

log

[
P (Y ≤ k)

1− P (Y ≤ k)

]
= αk + βx, k = 1, 2, 3, (3.2)

where x is the life events index. The usual goodness-of-fit statistics such as the deviance or the

Pearson chi-squared statistics are inappropriate for assessing the model fit of the assumed model.

When we fit the model using PROC GENMOD in SAS it gives X2 = 25.75 with 26 degrees of

freedom. According to the chi-square distribution the P -value is about 0.4769. However, we doubt

this result because the contingency table is so sparse due to the continuous type covariate variable

and it will be compared with other tests in a later section.

As a remedy to the regular chi-squared test many researchers have studied modified test statistics

in the presence of continuous type covariates. Among others, we simply introduce the test by

Pulkstenis and Robinson (2004). The test statistic is applied to a table reconstructed using ordinal

scores. The ordinal score which was originally defined by Lipsitz et al. (1996) is given by

s(xi) = π1(xi) + 2π2(xi) + · · ·+ rπr(xi). (3.3)

In particular, when r = 2 the ordinal score s(xi) is equivalent to the binary response probability

π2(xi). Since each 0 ≤ πk(xi) ≤ 1 with
∑r
k=1 πk(xi) = 1 the ordinal scores satisfy the relationship

1 ≤ s(xi) ≤ r for each observation. When both types of covariates are included in the model
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Pulkstenis and Robinson (2004) suggested a statistic of the form

X2
PR =

I∑
j=1

2∑
h=1

r∑
k=1

(njhk − Êjhk)
2

Êjhk
, (3.4)

where I denote the number of categorical covariates patterns, and the index h means the subpar-

tition using the ordinal scores which will explained in the next section. Pulkstenis and Robinson

(2004) recommend a limiting chi-square distribution with (2I−1)(r−1)− q−1 degrees of freedom,

where q is the number of categorical covariates which compose I covariates patterns. We note that

2I reflects the doubles of I by the contribution of continuous variables. This statistic is analogous to

the regular Pearson chi-squared test for a model containing an additional indicator variable which

has resulted from continuous variables dichotomized at its median of ordinal scores. As commented

by Kuss (2002) the requirement of both types of categorical and continuous covariates in the model

seems to be a weakness of this test owing to the construction principle of the random table.

4. Proposed Goodness-of-Fit Test

4.1. Test statistic on the random table

When a model contains at least one continuous covariate the chi-squared statisticX2 cannot directly

be obtained from such a table in Table 3.1. In order to find the goodness-of-fit statistic we need an

artificial g × r table randomly determined by some criterion. Here we use g instead of l to denote

the number of subgroups which are not fixed in advance as in Table 3.1. The whole observations

are partitioned according to the following steps. We first sort the ordinal scores defined in (2.3) in

an increasing order and then partition the whole observations into g groups having approximately

equal numbers of elements. The first group consists of [n/g] number of subjects having the ordinal

scores from the smallest, where [a] denotes the largest integer smaller than or equal to a. The

second group is similarly formed by the subjects having the next [n/g] smallest ordinal scores. In

this fashion the subgroup boundaries [cj , cj+1) of row variable W are determined with c1 = 0 and

cg+1 = ∞, and we finally obtain a random table given by Table 4.1.

An observation (yi,xi) with the ordinal score s(xi) and yi = k belongs to the (j, k)th cell of Table

4.1 provided cj ≤ s(xi) < cj+1. When the assumed model is fitted on the dataset we use the

estimated parameters in finding the ordinal scores s(xi) and the expected value Êjk. The Êjk is

obtained by summing the estimated probabilities π̂k(xi) for subjects belonging to the (j, k)th cell.

That is,

Êjk =
∑

ŝ(xi)∈[cj ,cj+1)

π̂k(xi), (4.1)

where the summation is taken over all subjects with cj ≤ s(xi) < cj+1 and yi = k.

The proposed test statistic based on Table 4.1 is of the form

Tn =

g∑
j=1

r∑
k=1

(njk − Êjk)
2

Êjk
, (4.2)

where the Êjk is given by (4.1).

The proposed statistic Tn is not guaranteed to have an approximate chi-square distribution because

Tn has not been obtained from the regular contingency on which the X2 of (3.1) is computed. Thus
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Table 4.1. Grouping structure by ordinal scores

Subgroups
Response levels

Total
1 · · · k · · · r

1 n11 · · · n1k · · · n1r n1

..

.
..
.

..

.
..
.

..

.

j nj1 · · · njk · · · njr nj
..
.

..

.
..
.

..

.
..
.

g ng1 · · · ngk · · · ngr ng

we encounter a difficulty in applying the proposed test statistic in assessing the goodness-of-fit of

the ordinal response model. Among many authors who discussed the approximate distribution of

the chi-squared type statistic on random tables, Moore and Spruill (1975) has been a good reference.

Bull (1994) suggested that the Pearson chi-squared statistic on the random cell tables can be

approximated by a chi-squared distribution with g(r − 1) − 2 degrees of freedom, which coincides

with the Hosmer-Lemeshow test when r = 2.

4.2. Regularity conditions for the limiting distribution

In this section we reformulate the regularity conditions of Moore and Spruill (1975) in the framework

of the cumulative logit model to find the limiting distribution of the test statistic Tn in (4.2).

According to the result of Moore and Spruill (1975), the Pearson chi-squared type statistic Tn
seems to have a value between a chi-squared variate with df = g(r − 1) − m and a chi-squared

variate with df = g(r− 1). We discuss the necessary conditions to the limiting distribution of Tn in

the setup of cumulative logit model by referring to those of Moore and Spruill (1975). We suggest

that the goodness-of-fit test statistic Tn has the following limiting distribution given by

χ2(g(r − 1)−m) +

k2∑
k1

λjχ
2
j (1), (4.3)

where the first term χ2(g(r − 1) − m) is a chi-squared distribution with g(r − 1) − m degrees of

freedom, and the second term is a linear combination of independent chi-square variates χ2
j (1)

′s

each having one degree of freedom with k1 = g(r− 1)− (m− 1) and k2 = g(r− 1). The λ′
js in (4.3)

satisfy 0 ≤ λj < 1. As we see in the Example mentioned before, when only categorical covariates

are included in the model the Pearson type X2 statistic in (3.1) has an approximate chi-squared

distribution with g(r − 1)−m degrees of freedom, which coincides with the first term of (4.3).

Now we briefly discuss on the regularity conditions of Moore and Spruill (1975) in the framework of

our model but we skip detailed derivation because of complex notations and lengthy proof. Firstly,

we specify the distribution function F (y,x|θθθ) and its probability density (or mass) f(y,x|θθθ) for

the given dataset (yi,xi), i = 1, 2, . . . , n. In the regression model including GLM’s the response

variable yi is random but the covariate xi is fixed by design. But it is more desirable to assume a

joint distribution F (y,x|θθθ) to investigate the regularity conditions of Moore and Spruill (1975). The

density f(y,x|θθθ) depends on θθθ but we sometimes omit its dependence on θθθ to simplify the notation.

The density f(y,x) can be written as f(y|x)v(x), where v(x) is the marginal distribution of covariate

x. The conditional density f(yi|xi) is given by the response probabilities πk(xi) satisfying the

relationship of GLM in (2.4). On the other hand we may let v(xi) = 1/n for each xi in the design

points of the regression model. Then for the observation (yi,xi) with yi = k the joint density can
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be written as

f(yi,xi) = πk(xi)×
1

n
. (4.4)

The probability pjk(θθθ|x) of an observation belonging to (j, k)th cell of Table 4.1 can be represented

by the relationship

pjk(θθθ|x) = P [W = j, Y = k|x]
= P [s(x) ∈ [cj , cj+1), Y = k|x] , (4.5)

where W denotes an artificial row variable partitioning the whole into g subgroups. In terms of the

joint density in (4.4) with yi = k

pjk(θθθ) =

∫
s(x)∈[cj ,cj+1)

f(k,x)dx =
1

n

∑
s(xi)∈[cj ,cj+1)

πk(xi), (4.6)

where πk(xi) depends on θθθ but we omit for simplification. We note that
∑g
j

∑r
k pjk(θθθ|x) = 1. The

relationship in (4.6) is an extension of the binary logistic regression model studied by Hosmer and

Lemeshow (1980).

Among many of the regularity conditions the following two conditions on the asymptotic properties

of MLE hold as discussed in the Appendix of Agresti (2002). Firstly, the MLE θ̂θθ satisfies

θ̂θθ = θθθ +Op
(
n− 1

2

)
(4.7)

and

√
n
(
θ̂θθ − θθθ

)
= n− 1

2

n∑
i=1

h(yi,xi|θθθ) + op(1). (4.8)

The h(yi,xi|θθθ) in (4.8) is given by J−1[∂ log f(yi,xi|θθθ)/∂θθθ], where J is an information matrix for

the density f(y,x). To simplify the notation hereafter we denote pjk by pσ using a single index σ

instead of index jk. The pσ is continuous function of θθθ and also continuously differentiable in θθθ

since it can be represented in terms of πk(x). Let B be a g× r matrix having the p
−1/2
σ ∂pσ/∂θθθτ as

a (σ, τ)th element. Furthermore the F (y,x|θθθ) is need to be continuous at every vertexes of Table

4.1 with the log f(y,x|θθθ) differentiable in θθθ satisfying the relationship

∂

∂θθθ
F (y,x|θθθ) =

∫
∂

∂θθθ
f(y,x|θθθ)dydx. (4.9)

Finally we assume that the rank of a matrix having ∂pσ(θθθ)/∂θτ as an (σ, τ)th element is m. The

other regularity conditions of Moore and Spruill (1975) can be routinely checked. In particular, if

the matrix J −B′B is positive definite then all 0 < λj < 1.

4.3. Bootstrapping the test statistic

In general, the null distribution of the proposed test statistic Tn is difficult to obtain. This also

holds for its limiting null distribution. In this setting, the bootstrap methods provide an attractive

approach to determine a critical point for the test, or to approximate the P -value of the observed

value of the proposed test statistic. The bootstrap based test will be a good alternative to the

complex limiting distribution mentioned of the previous section. For the given dataset (yi,xi),

i = 1, 2, . . . , n, we proceed the parametric bootstrapping procedure in the following steps.
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Table 4.2. Random table formed by ordinal scores when g = 3

Subgroup
Mental status

Total
1 2 3 4

1 6 3 1 1 11

2 4 6 4 3 17

3 2 3 2 5 12

Total 12 12 7 8 40

Step 1: Fit the assumed model to find the estimated π̂k(xi) and the ordinal scores ŝ(xi).

Step 2: Calculate the value of Tn from the g × r table given in Table 4.1.

Step 3: Generate the ordinal responses y∗i from the multinomial distribution having the estimated

probabilities π̂k(xi) to form a bootstrap sample (y∗i ,xi), i = 1, 2, . . . , n.

Step 4: Similarly to Step 2 we calculate the statistic T ∗
n based on the bootstrap sample of Step 3.

Step 5: Step 3 and Step 4 are repeated B times to find the empirical significance probability of the

statistic Tn.

We explain the suggested bootstrap testing procedure through the dataset of Section 3.1. We

assume the same model in (3.2). If we take g = 3 then we can form a random table such as Table

4.2 using the ordinal scores.

The proposed test statistic Tn provides a P -value of 0.97 when we take B = 1,000. On the other

hand, the value Tn = 1.20 provides P -value = 0.991 when we use the chi-square approximation

with df = 7 which has been suggested by Bull (1994). These results are quite different from the

P -value 0.4769 of the regular Pearson X2 test statistic with df = 26 which has been applied to

the Table 3.1. The test by Pulkstenis and Robinson (2004) cannot be applied because there are no

categorical covariates. Finally, we comment that the levels of Life events index (x) are grouped as

subgroup 1, 2, and 3 according to x ≤ 2, 3 ≤ x ≤ 5 and 6 ≤ x, respectively.

5. Concluding Remarks

The chi-squared statistic has been widely used for testing goodness-of-fit of generalized linear models

such as a log-linear model and logistic model. However, we should be cautious of the use of this

test when it is based on the random table which is determined by other partitioning rules. The chi-

squared statistic does not have a limiting chi-square distribution in general. In the goodness-of-fit

of binary logistic regression model the test by Hosmer and Lemeshow (1980) has been a popular

test that can be applied when continuous type explanatory variables are included in a model.

In this paper we focus our attention to the ordinal response data in which the outcome response is

an ordinal variable. To form a table from which the chi-squared statistic is computed we require

a criteria partitioning the whole observations into several subgroups. As an extension of predicted

probabilities in binary logistic regression we use the ordinal scores as a partition measure which

are linear combinations of response probabilities. We proposed a grouping method and the chi-

squared statistic for testing goodness-of-fit of cumulative logit model. We also discussed the limiting

distribution and the parametric bootstrap to apply the suggested test. The suggested method has

been explained through an example of an ordinal response dataset.

Finally, we comment on the use of a chi-squared test for the goodness-of-fit of a model containing

continuous type explanatory variables. The resulting table from the fit of a model is not a regular
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one in the sense that the cell boundaries are not fixed but randomly determined by some other

criteria. The chi-squared statistic from this kind of table does not have a limiting chi-distribution

in general, and we need to be cautious in the routine use of a chi-squared type goodness-of-fit test.
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