Abstract
SSDs are one of the best media to support portable and desktop computers' storage devices. Their features include non-volatility, low power consumption, and fast access time for read operations, which are sufficient to present flash memories as major database storage components for desktop and server computers. However, we need to improve traditional index management schemes based on B-Tree due to the relatively slow characteristics of flash memory operations, as compared to RAM memory. In order to achieve this goal, we propose a new index management scheme based on a compressed hot-cold clustering called CHC-Tree. CHC-Tree-based index management improves index operation performance by dividing index nodes into hot or cold segments and compressing pointers and keys in the index nodes and clustering the hot or cold segments. The offset compression techniques using unused free area in cold index node lead to reduce the number of slow erase operations in index node insert/delete processes. Simulation results show that our scheme significantly reduces the write and erase operation overheads, improving the index search performance of B-Tree by up to 26 percent, and the index update performance by up to 23 percent.
SSD는 데스크탑 및 이동형 컴퓨터의 저장 장치를 지원하는 우수한 미디어이다. SSD는 비휘발성, 낮은 전력 소모, 빠른 데이터 접근 속도 등의 특징으로 데스크탑 및 서버용 데이터베이스의 핵심 저장 요소가 되었다. 하지만, 일반 RAM 메모리에 비하여 상대적으로 느린 연산 특성을 고려하여 기존의 전통적인 인덱스 관리 기법을 개선할 필요가 있다. 이를 위하여, 본 논문은 CHC-Tree 라고 하는 압축된 핫-콜드 클러스터링에 기반하는 새로운 인덱스 관리 기법을 제안한다. CHC-Tree는 인덱스 노드를 핫-콜드 세그먼트로 분류하며, 인덱스 노드의 키와 포인터를 압축한다. 콜드 세그먼트의 비활용노드의 오프셋 압축으로 느린 쓰기연산의 부담을 줄인다. 또한, 실험 결과를 통하여 기존의 B-Tree 기반의 인덱스 관리 기법보다 인덱스 검색 연산에서 26%, 인덱스 수정 연산에서 23% 이상 우수함을 확인하였다.