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Abstract
Genome-wise association studies (GWASs) have be-
come popular approaches to identify genetic variants 
associated with human biological traits. In this study, we 
applied Structural Equation Models (SEMs) in order to 
model complex relationships between genetic networks 
and traits as risk factors. SEMs allow us to achieve a 
better understanding of biological mechanisms through 
identifying greater numbers of genes and pathways that 
are associated with a set of traits and the relationship 
among them. For efficient SEM analysis for GWASs, we 
developed a procedure, comprised of four stages. In the 
first stage, we conducted single-SNP analysis using re-
gression models, where age, sex, and recruited area 
were included as adjusting covariates. In the second 
stage, Fisher’s combination test was conducted for 
each gene to detect significant genes using p-values 
obtained from the single-SNP analysis. In the third 
stage, Fisher’s exact test was adopted to determine 
which biological pathways were enriched with significant 
SNPs. Finally, based on a pathway that was associated 
with the four traits in common, a SEM was fit to model 
a causal relationship among the genetic factors and 
traits. We applied our SEM model to GWAS data with 
four central obesity related traits: suprailiac and sub-
scapular measures for upper body fat, BMI, and 
hypertension. Study subjects were collected from two 
Korean cohort regions. After quality control, 327,872 
SNPs for 8842 individuals were included in the analysis. 
After comparing two SEMs, we concluded that supra-
iliac and subscapular measures may indirectly affect hy-
pertension susceptibility by influencing BMI. In con-
clusion, our analysis demonstrates that SEMs provide a 
better understanding of biological mechanisms by identi-
fying greater numbers of genes and pathways.
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Introduction
Genome-wide association studies (GWAS) are one of 
the major tools used to detect disease susceptibility 
loci. They have been successful in identifying associa-
tions of hundreds of single nucleotide polymorphism 
(SNPs) with complex traits (Rioux et al., 2007; Saxena 
et al., 2007; WTCCC, 2007; Zanke et al., 2007). 
However, testing only for the association of individual 
SNPs has limitations in unveiling the complex mecha-
nism of genetic structures for complex traits (Lesnick et 
al., 2007). Dissecting biological phenomena and under-
standing the structure of the complex components com-
prising a biological pathway are challenging tasks. 
Commonly, GWASs have reported several significant 
SNPs from individual SNP analyses. However, complex 
traits are affected by the joint action of various genes. 
If only the significant SNPs from the individual SNP 
analysis are considered, the genetic variants that have 
joint action in determining traits with small individual 
contributions will be neglected. 
  Furthermore, the functions of SNPs are not well con-
ceived in many cases, but the functions of genes and 
pathways have been better explored. Therefore, gene- 
and pathway-based analysis provides an easier inter-
pretation to unravel the mechanisms of complex traits 
(Baranzini et al., 2009; Kraft and Raychaudhuri, 2009; 
Rajagopalan and Agarwal, 2005). Most complex traits 
arise from complex interactions among multiple genetic 
factors and environmental factors. 
  In this study, we applied Structural Equation Models 
(SEMs) in order to model complex relationships between 
genetic networks and traits as risk factors (Bollen, 
1989). The SEM was originally developed in the field of 
social science to fit a model with unobserved variables. 
It is well known that the main advantage of the SEM 
approach is that it allows us to compare several candi-
date models. Our application of the SEM to a GWAS 
enables us to investigate how each risk factor affects a 
targeted trait directly or through other variables, and 
SEM is used to represent the relationship among multi-
ple phenotypes. In order to choose the components 
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Table 1. Demographic information of study subjects

Features

Total individuals 8842

Gender (male/female) 4183 (47%)/4659 (53%)

Area (ansung/ansan) 4205 (48%)/4637 (52%)

Age 52.221 (±8.91)

Body mass index (BMI) 24.59 (±3.12)

Subscapular skinfold (mm)  23.69 (±10.96)

Suprailiac skinfold (mm)  25.70 (±11.72)

1Mean (±Standard deviation).

used to build a model, it is desirable to consider a high-
er level of genetic components, such as gene and bio-
logical pathways. 
  However, due to the enormous number of SNPs in a 
GWAS, it is practically difficult to apply SEMs to GWAS 
data. Thus, some step-wise procedure for filtering out 
SNPs is required in order to reduce the burden of 
computation. Our proposed procedure comprises four 
stages. At the first stage, single SNP association tests 
are conducted. The next step is to combine P-values for 
correlated SNPs in order to represent a gene by using 
Fisher’s combination test (Zaykin et al., 2007). Next, 
Fisher’s exact test is employed to find the association 
of a pathway related with the traits. Finally, SEMs are 
used to model how each risk factor influences the trait 
of interest based on the pathway chosen from the pre-
vious stages. 
  The proposed SEM approach is applied to a large-scale 
GWA dataset (i.e., 8842 samples and 327,872 SNPs), 
obtained from a Korean population. Especially, our anal-
ysis focuses on identifying the relationship between hy-
pertension, obesity, and genetic variants. In hyperten-
sion, it is known that greater fatness or obesity in the 
extreme is associated with greater blood pressure or 
hypertension in the extreme (Dustan, 1991). Understan-
ding the connections between hypertension and relative 
obesity is an important step in understanding the bio-
logical mechanism between them and providing useful 
information for the potential treatment. Central body fat 
distribution is especially associated with hypertension 
and insulin resistance (Licata et al., 1994; Scaglione et 
al., 1995). In this study, we investigated the genetic 
components associated with four central obesity-related 
traits by conducting the proposed four-stage analysis 
for large-scale GWAS data. Our GWAS data were col-
lected from the participants of two cohort regions in 
Korea. The four traits used for analyses were suprailiac, 
subscapular, BMI, and hypertension. BMI is used for 
whole-body obesity, and suprailiac and subscapular 
represent upper central body fatness.

Methods

Study subjects

The data were collected from a Korea Association 
Resource (KARE) project that was initiated in 2007 to 
undertake a large-scale GWA analysis. The 10,038 par-
ticipants were recruited from two community-based co-
horts: Ansung, representing mainly a rural community, 
and Ansan, representing an urban community--5018 
from Ansung and 5,020 from Ansan, aged between 40 
and 69 years old (Cho, et al., 2009) (Table 1). A total 

of 8800 participants (4162 men and 4638 women) were 
included for the GWAS analysis, excluding those who 
were taking medicine or therapy for lipoprotein levels.

Genotyping and quality control

The DNA samples were isolated from the peripheral 
blood of participants and genotyped using the Affymet-
rix Genome-Wide Human SNP array 5.0. The Bayesian 
Robust Linear Modeling using Mahalanobis Distance 
(BRLMM) was used for genotype calling. Standard data 
quality control procedures were applied for the subjects 
and SNPs, as described in Cho et al. (2009). After con-
sideration of the sample and SNP quality controls, a to-
tal of 8842 participants and 352,228 SNPs remained for 
the subsequent analysis. 

Obesity-related traits

In this study, four traits were considered: subscapular, 
suprailiac, body mass index (BMI), and hypertension. 
Subscapular and suprailiac values are skinfold thickness 
measurements for upper central body fat distribution 
around the waist. The subscapular measure is a vertical 
fold taken one inch to the side of the umbilicus from the 
abdominal. The suprailiac measure is a diagonal fold 
taken midway between the hip joint and the bottom of 
the rib cage. BMI is defined as the individual's body 
weight divided by the square of his or her height. 
Hypertensive status was defined as a SBP ＜140 mm 
Hg and/or DBP ＜90 mm Hg, and the blood pressure 
was measured in the supine position. One of the 
well-known risk factors of cardiovascular diseases is 
obesity. Especially, multiple studies have reported that 
abdominal obesity is a better predictor of hypertension 
rather than whole body fat mass (Niskanen et al., 2004; 
Selby et al., 1989).

Statistical analysis of genetic association

For each SNP, genetic association analyses were con-
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ducted for individual phenotypes independently using 
three linear regression models for quantitative traits and 
a logistic regression model for hypertension. Age, sex, 
and recruited area (Ansan or Ansung) were included as 
adjusting covariates in all of the regression models. An 
additive allelic effect was assumed for the mode of ge-
netic inheritance. Association analyses were conducted 
using PLINK software (Purcell et al., 2007). 
  Next, gene-based association tests were conducted 
using Fisher's combination test on the set of p-values 
obtained from the SNPs within a gene. The statistic (ZF) 
for K p-values obtained from K SNPs in a gene is given 
by:

1
2 log
K

F i
i

Z P
=

= − ∑
,

  which follows a χ2
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are independent (Fisher 1925). 
  Thirdly, Fisher's exact test, based on the hyper-
genometric distribution, was employed to search for bio-
logical pathways that were enriched in the significantly 
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that are of interest; S be the number of genes that are 
significantly associated with the disease (nominal P-value 
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Combinatorial analysis using SEMs 

SEMs are comprehensive statistical models that allow 
us to test relations among observed and latent (not ob-
served directly) variables. The SEMs for our genetic net-
works were defined as follows:

  y = Λyη+ε,
 η = Bη+ç,
  where y is a vector representing the observed varia-
bles; η is a vector of the latent variables (pathway); Λy 
is a matrix representing the true relationships between 
the SNP and pathway; and B is a matrix representing 
the true relationships among the latent variables. 
Random errors in the equations are represented by ε 
and ç. To fit this model, we used AMOS, a SEM soft-
ware solution provided by SPSS (http://www.spss.com/ 

amos/). 

Results

Single-SNP analysis using regression models 

Of 10,038 participants recruited from two Korean cohort 
areas, 8800 individuals were included to analyze the as-
sociation between genetic variants and four central obe-
sity-related traits: suprailiac, subscapular, BMI, and 
hypertension. The association between each of the 
327,872 SNPs and each trait was evaluated via a re-
gression model, adjusted for gender, age, and recruit-
ment area. We used a significance level corresponding 
to p-value＜1.0e-5 to determine which SNPs were asso-
ciated with a trait. The detailed results are in Table 2. 
  For suprailiac, 20 SNPs resulted in a significant 
association. Of these, rs16906215 in TLR4 showed the 
strongest association. The TLR4 gene encodes a toll-like 
receptor protein, which is an important member of the 
innate immune response. This gene has been reported 
to be associated with type 2 diabetes (Kolz, 2008). 
However, the effect of a SNP located far downstream of 
a gene is hard to interpret. 
  For subscapular, 5 SNPs from 4 genes met the sig-
nificance criteria. The four genes are GRIN2A, NBPF21P, 
LOC1001131027, and FTO, and two SNPs from FTO 
were identified to be significant. FTO is one of the pop-
ular genes that are associated with fat mass and 
obesity. The rs9939609 allele in the FTO gene was pre-
viously reported to be positively related with BMI 
(Frayling et al., 2007; Willer et al., 2009) and type 2 dia-
betes (WTCCC, 2007). Rs9939609 also showed a mar-
ginally significant association with subscapular, produc-
ing a p-value of 1.14e-05 and a significant association 
with BMI in our analysis. The most significant SNP was 
located upstream of the NMDA receptor (GRIN2A) gene, 
and GRIN2A was reported to be correlated with hyper-
tension from a previous GWAS data analysis (Torkamani 
et al., 2008). 
  In the analysis of hypertension, four significant SNPs 
were detected from three genes: ATP2B1, CSK, and 
PTPN11. The results of ATP2B1 and CSK reproduced 
the significant relationships between variants of the 
genes and hypertension that had been previously re-
ported by Hong et al., (2010). In their study, they con-
ducted a meta-analysis using two cohort studies in 
Korea, including KARE (Hong et al., 2010). ATP2B was 
also reported to be associated with hypertension in an-
other study (Levy et al., 2009). The key function of 
ATP2B1 is to control homeostasis of cellular calcium ion 
levels, which are related with vascular smooth muscle 
contraction and dilation.
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Table 2. SNPs significantly associated with central obesity-related traits

RS number Chr P-value MAF Gene Symbol1 Distance Description

Suprailiac
rs16906215 9 1.68E-07 0.025 TLR4 66,490 down 70k

rs7681841 4 7.48E-07 0.012 FBXO8 0 intron

rs10090537 8 9.80E-07 0.011 RIMS2 0 intron

rs3856726 3 1.34E-06 0.012 ATG3 97,246 up 100k

rs4472504 8 1.36E-06 0.033 ZMAT4 0 intron

rs17109716 14 1.89E-06 0.032 NRXN3 0 intron

rs1510447 8 2.13E-06 0.232 SGCZ 0 intron

rs601619 18 2.16E-06 0.012 CCDC102B 0 intron

rs4745034 9 4.08E-06 0.029 TRPM3 0 intron

rs17599042 12 4.89E-06 0.034 MUC19 41,221 down 50k

rs1570064 6 5.25E-06 0.015 RHAG 37,578 up 40k

rs11876341 18 6.01E-06 0.098 MEX3C 76,301 up 80k

rs17168600 7 6.05E-06 0.036 LOC100128217 0 intron

rs2210977 1 6.86E-06 0.019 MARK1 0 intron

rs7583940 2 7.03E-06 0.068 LRPPRC 32,425 up 40k

rs6965746 7 7.47E-06 0.309 SLC25A13 77,756 up 80k

rs17226252 5 8.74E-06 0.017 16,777,215

rs3103261 2 9.25E-06 0.02 DIS3L2 0 intron

rs1849809 4 9.33E-06 0.245 MGC48628 0 intron

rs7010545 8 9.76E-06 0.235 SGCZ 0 intron

Subscapular
rs16951883 16 1.06E-06 0.018 GRIN2A 42,168 up 50k

rs17248901 3 2.66E-06 0.03 NBPF21P 9,941 down 10k

rs6561930 13 3.36E-06 0.013 LOC100131027 36,359 down 40k

rs7193144 16 8.94E-06 0.126 FTO 0 intron

rs8050136 16 9.01E-06 0.126 FTO 0 intron

BMI
rs17178527 6 2.24E-08 0.25 LOC729076 97,011 down 100k

rs9939609 16 1.43E-06 0.127 FTO 0 intron

rs11000212 10 1.45E-06 0.206 DDIT4 78,025 up 80k

rs9926289 16 2.45E-06 0.127 FTO 0 intron

rs8050136 16 2.68E-06 0.126 FTO 0 intron

rs527248 1 2.98E-06 0.237 SEC16B 22,728 down 30k

rs7193144 16 3.3E-06 0.126 FTO 0 intron

Hypertension
rs17249754 12 1.07E-07 0.374 ATP2B1 10,742 up 20k

rs7136259 12 1.7E-07 0.381 ATP2B1 31,344 up 40k

rs1378942 15 2.81E-07 0.172 CSK 0 intron

rs11066280 12 7.15E-06 0.172 PTPN11 38,753 up 40k

1Nearby genes are defined as the closest genes to the SNP within signal boundary or the closest genes within a 200-kb 

window.

MAF, minor allele frequency; BMI, body mass index.

  A total of seven SNPs from four genes were identified 
for BMI. The four genes are LOC729076, FTO, DDIT4, 
and SEC16B, and four SNPs, including rs9939609, 
which was shown for the subscapular analysis, were 
from the FTO gene. SEC16B polymorphisms were pre-
viously reported to be associated with obesity and obe-
sity-induced diabetes (Hotta et al., 2009).

Gene-based analysis using Fisher’s combination 
test

Next, we tested for the association of genes using 
Fisher’s combination test, where a set of p-values for 
SNPs in a gene were considered simultaneously. We 
mapped the identified SNPs to exon/intron or within the 
5-kbp upstream/0.5-kbp downstream regions of the 
known genes. In total, 31,207 genes were annotated 
among 327,872 SNPs. The P-values of the genes were 
calculated by Fisher’s combination test. The numbers of 
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Table 3. Genes detected to be significantly associated with more than two traits from a gene-based association test. Genes 

having P-values＜1.0E−5 from Fisher’s combination test were considered to be significant. The numbers of significant 

genes were 55 for subscapular (SUB), 54 for suprailiac (SUP), 69 for BMI, and 75 for hypertension (HTN)

Traits Significant genes in common

Obesity
  SUB+SUP PDIA6, SNX9 LOC, SNX9, FBXL20, SUCLG2, hCG_1981, BMPR1B, COMMD10, DOCK10

  BMI+SUB PDIA6, LOC34134, JAKMIP2, PADI2, GLI3, SNX9 LOC, PARD3B, SNX9, NUP205, FTO, CDC123, TULP4, INDOL1

  BMI+SUP PDIA6, DMGDH, SSBP3, SNX9 LOC, MACF1, SNX9, PGCP, AUTS2

Obesity and hypertension
  BMI+HTN SH3RF3, C12orf51, ATG10

  SUB+HTN FBXL20, HSD17B12

  SUP+HTN DCC, FBXL20, SRPK1, FBXL17

Genes significant at more than two traits are written in bold.

genes that were significantly associated with a p-value 
less than 1.0e-5 were selected. From the analysis, we 
could find that a large portion of significant genes con-
tained insignificant SNPs. This shows that joint analysis 
of multiple loci within a gene can have more power, 
when a single SNP does not have a strong effect on 
complex diseases. 
  For subscapular, 33 genes were found to be asso-
ciated. For subscapular, 54 genes were detected. 
Sixty-nine genes showed a strong association with BMI. 
Hypertension had 75 genes showing a strong associa-
tion. The gene-based approach detected more genes in 
common within the four phenotypes than the sin-
gle-marker association analyses. Three genes, SH3RF3, 
c12ORF51, and ATG10, were detected to be shared 
with hypertension and BMI. BMI and suprailiac shared 
13 genes, BMI and suprailiac had 8 genes in common. 
Thus, subscapular and BMI had a much greater number 
of associated genes in common than suprailiac and 
BMI. Subscapular and suprailiac had 9 genes in 
common. BMI, subscapular, and suprailiac had PDIA6 
and SNX9 in common (Table 3). The PDIA6 gene enc-
odes a protein disulfide isomerase family member pro-
tein and localizes in the endoplasmic reticulum (ER). The 
role of this gene, related to obesity, has been discussed 
in the aspect of one of the adipocyte extracellular ma-
trix (ECM) processing enzymes (Mariman and Wang, 
2010), which partly explains the association between 
SNPs in PDIA6 and obesity-related traits in common. 

Pathway-based analysis using Fisher’s exact 
test

In order to determine the biological pathways that are 
associated with the four traits, we conducted tests on 
whether a pathway was enriched with the significant 
genes identified from the gene-based analysis. Our 
pathway-based analysis was conducted using 465 path-

ways retrieved from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG; www.genome.jp/kegg/), BioCarta 
(www.biocarta.com/), and GenMAPP (http://www.genmapp. 
org/) databases. Table 4 shows the significant pathways 
for each phenotype, identified using p-values from 
Fisher’s exact test. Eighteen significant pathways were 
detected for BMI, 23 significant pathways for hyper-
tension, 16 significant pathways for suprailiac, and 17 
significant pathways for subscapular. MAPK signaling 
pathway was shown to be common for all of the four 
analyzed traits. Hypertension, subscapular, and supra-
iliac had calcium signaling pathway in common. 
  MAPK signaling pathway is one of the most ubiquitous 
signal transduction systems. The role of JNK-MAPK sig-
naling in obesity was reported by multiple studies (Bost 
et al., 2005; Hirosumi et al., 2002). In addition, the 
MAPK signaling pathway is claimed to be related to car-
diac hypertrophy through the Grb2 adapter protein and 
cardiac p38 MAPK signaling. Human cardiac hyper-
trophy is a common condition that often develops as a 
by-product of hypertension or valvular heart disease 
(Zhang et al., 2003). 
  The calcium signaling pathwayis a well-known target 
for treatment of hypertension (Berridge, 1994). Recently, 
calcium signaling in obesity was also studied and re-
ported to have a role in determining the cell fate of adi-
pocytes (Sergeev, 2009).

SEM Analysis

In this analysis, SEMs were used to equate causal rela-
tionships between genetic networks and correlated phe-
notypes based on the analysis results in the previous 
stages. We constructed SEMs, including the MAPK sig-
naling pathway, which appears to be significantly com-
mon for every phenotype. SNPs were chosen within 
genes from the MAPK signaling pathwaywith p-values 
less than 1.0e-04 for each phenotype. In the models, 



GWAS Using Structural Equation Models   155

Table 4. Pathways significantly enriched for genes associated with one of the four traits. p-values obtained from Fisher’s 

exact test based on hypergeometric distribution

Name of Pathway p-value Name of Pathway p-value

Suprailiac Subscapular
VEGF_SIGNALING_PATHWAY 0.0007 METHANE_METABOLISM 0.00462

CELL_ADHESION_MOLECULES 0.0091 CARBON_FIXATION 0.00515

ADHERENS_JUNCTION 0.0044 REDUCTIVE_CARBOXYLATE_CYCLE 0.00521

PURINE_METABOLISM 0.0079 THIAMINE_METABOLISM 0.00629

GAP_JUNCTION 0.045 RIBOFLAVIN_METABOLISM 0.0089

COMPLEMENT_AND_COAGULATION_CASCADES 0.0231 VITAMIN_B6_METABOLISM 0.01248

ANTIGEN_PROCESSING_AND_PRESENTATION 0.0043 BIOTIN_METABOLISM 0.01257

RENIN_ANGIOTENSIN_SYSTEM 0.0079 LIPOIC_ACID_METABOLISM 0.01409

CALCIUM_SIGNALING_PATHWAY 0.0079 CALCIUM_SIGNALING_PATHWAY 0.01456

HEMATOPOIETIC_CELL_LINEAGE 0.0208 RETINOL_METABOLISM 0.01514

MAPK_SIGNALING_PATHWAY 0.0208 PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 0.01664

B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.0079 LIMONENE_AND_PINENE_DEGRADATION 0.01682

FC_EPSILON_RI_SIGNALING_PATHWAY 0.0128 PHENYLPROPANOID_BIOSYNTHESIS 0.0208

CIRCADIAN_RHYTHM 0.0208 ALKALOID_BIOSYNTHESIS_I 0.02288

LONG_TERM_POTENTIATION 0.0445 AMINOACYL_TRNA_BIOSYNTHESIS 0.0308

MAPK_SIGNALING_PATHWAY 0.03288

GLYCAN_STRUCTURES_DEGRADATION 0.04424

BMI Hypertension
GLYCOLYSIS_AND_GLUCONEOGENESIS 0.0005 HISTIDINE_METABOLISM 0.00007

CITRATE_CYCLE 0.00515 GAMMA_HEXACHLOROCYCLOHEXANE_DEGRADATION 0.00044

PENTOSE_PHOSPHATE_PATHWAY 0.00629 BISPHENOL_A_DEGRADATION 0.00079

INOSITOL_METABOLISM 0.00629 TRYPTOPHAN_METABOLISM 0.00079

PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS 0.0089 PHENYLALANINE_TYROSINE_AND_TRYPTOPHAN_BIOSYNTHESIS 0.00091

FRUCTOSE_AND_MANNOSE_METABOLISM 0.01248 NOVOBIOCIN_BIOSYNTHESIS 0.00148

GALACTOSE_METABOLISM 0.01456 SELENOAMINO_ACID_METABOLISM 0.00208

FATTY_ACID_METABOLISM 0.0208 GLUTATHIONE_METABOLISM 0.00231

SYNTHESIS_AND_DEGRADATION_OF_KETONE_BODIES 0.02521 NAPHTHALENE_AND_ANTHRACENE_DEGRADATION 0.00233

BIOSYNTHESIS_OF_STEROIDS 0.02665 1,4_DICHLOROBENZENE_DEGRADATION 0.00246

BILE_ACID_BIOSYNTHESIS 0.03121 ETHYLBENZENE_DEGRADATION 0.00445

MAPK_SIGNALING_PATHWAY 0.03187 BUTANOATE_METABOLISM 0.00446

ANDROGEN_AND_ESTROGEN_METABOLISM 0.03329 MAPK_SIGNALING_PATHWAY 0.0045

OXIDATIVE_PHOSPHORYLATION 0.03953 THIAMINE_METABOLISM 0.00549

UREA_CYCLE_AND_METABOLISM_OF_AMINO_GROUPS 0.0402 VITAMIN_B6_METABOLISM 0.00808

CAFFEINE_METABOLISM 0.04429 BIOTIN_METABOLISM 0.00886

GLUTAMATE_METABOLISM 0.04848 LIPOIC_ACID_METABOLISM 0.01455

RETINOL_METABOLISM 0.01808

CALCIUM_SIGNALING_PATHWAY 0.0267

MONOTERPENOID_BIOSYNTHESIS 0.03128

SULFUR_METABOLISM 0.03222

CAPROLACTAM_DEGRADATION 0.04888

the pathway was treated as a latent variable, and SNPs 
and four phenotypes were the observed variables. Two 
models were considered, as shown in Fig. 1. Model 1 
assumes that suprailiac and subscapular influence BMI 
and that BMI influences hypertension. Model 2 assumes 
that suprailiac, subscapular, and BMI influence hyper-
tension simultaneously. 
  In an SEM, the goodness-of-fit index (GFI) measures 
the relative differences between the data and estimated 
values obtained from a model, while the adjusted GFI 
(AGFI) adjusts the GFI according to the degrees of 
freedom. If these two measures are close to 1, we can 

conclude that the model fits the data well. The Akaike 
information criterion (AIC) is a well-known measure that 
can be used for model comparisons. The smaller the 
AIC, the better the model is. Three types of good-
ness-of-fit measures were evaluated to select the best 
model of the two models: for model 1, GFI=0.791, 
AGFI=0.793, and AIC=1132.005; and for model 2, 
GFI=0.774, AGFI=0.776, and AIC=1290.599. In general, 
models with GFI and AGFI measures closer to 1 and 
with smaller AICs are considered to fit well. As GFI and 
AGFI were close to 1 for both models, both models fit 
the data well. But, model 1 showed a bigger GFI and 
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(a) Model 1. (b) Model 2.

Fig. 1. Structural equation models.

AGFI with a smaller AIC than model 2; model 1 was se-
lected to be the final model. Through a comparison be-
tween two models, we concluded that suprailiac and 
subscapular indirectly affect hypertension susceptibility 
by influencing BMI.

Discussion
Most GWASs have focused on single-SNP analyses of 
single traits. The result of a single-SNP analysis is lim-
ited to correlations between candidate susceptible loci 
and single traits. In this study, we conducted a gene- 
and pathway-based analysis beyond single-SNP analy-
sis. Based on the gene- and pathway-based analysis, 
we proposed the use of SEMs to construct a model for 
causal relationships among genetic factors and risk fac-
tors in terms of traits through an underlying biological 
pathway. 
  The gene-based analysis detected more significant 
genes than the single-SNP analysis. We demonstrate 
that gene-based analysis is a powerful method to detect 
genes that are associated with traits. A gene-based 
analysis is also easier to interpret, as function and the 
relevant disease with a gene are better investigated than 
a SNP. 
  A pathway-based analysis was conducted to find 
pathways that were significantly correlated with each 
phenotype. In our analysis, a pathway that was asso-
ciated with four traits in common was detected. 
Pathway-based analysis provides a more comprehensive 
understanding of the biological process of complex 
traits than a gene-based or single-SNP analysis. 
  SEM was used to identify the relationship among risk 
factors of a complex trait. In this study, SEMs were 
used to model how upper body fat distribution, repre-
sented by suprailiac and subscapular, and average body 

fat distribution, represented by BMI, were related with 
hypertension. Although we fit a limited number of SEMs, 
we demonstrated that SEM analysis is useful in inves-
tigating complex biological phenomena, because it al-
lows us to present complex causal relationships in 
equations and express them in path diagrams and be-
cause it deals better with correlated variables that occur 
frequently in biological data. 
  However, SEM has some limitations. It requires an ini-
tial model to start with. SEM is constructed under strict 
multivariate normality and independence assumptions 
among errors. Another difficulty is that run time in-
creases substantially as the number of variables 
increases. 
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