DOI QR코드

DOI QR Code

Identification of Causal and/or Rare Genetic Variants for Complex Traits by Targeted Resequencing in Population-based Cohorts

  • Kim, Yun-Kyoung (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health) ;
  • Hong, Chang-Bum (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health) ;
  • Cho, Yoon-Shin (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health)
  • 심사 : 2010.09.02
  • 발행 : 2010.09.30

초록

Genome-wide association studies (GWASs) have greatly contributed to the identification of common variants responsible for numerous complex traits. There are, however, unavoidable limitations in detecting causal and/or rare variants for traits in this approach, which depends on an LD-based tagging SNP microarray chip. In an effort to detect potential casual and/or rare variants for complex traits, such as type 2 diabetes (T2D) and triglycerides (TGs), we conducted a targeted resequencing of loci identified by the Korea Association REsource (KARE) GWAS. The target regions for resequencing comprised whole exons, exon-intron boundaries, and regulatory regions of genes that appeared within 1 Mb of the GWA signal boundary. From 124 individuals selected in population-based cohorts, a total of 0.7 Mb target regions were captured by the NimbleGen sequence capture 385K array. Subsequent sequencing, carried out by the Roche 454 Genome Sequencer FLX, generated about 110,000 sequence reads per individual. Mapping of sequence reads to the human reference genome was performed using the SSAHA2 program. An average of 62.2% of total reads was mapped to targets with an average 22X-fold coverage. A total of 5,983 SNPs (average 846 SNPs per individual) were called and annotated by GATK software, with 96.5% accuracy that was estimated by comparison with Affymetrix 5.0 genotyped data in identical individuals. About 51% of total SNPs were singletons that can be considered possible rare variants in the population. Among SNPs that appeared in exons, which occupies about 20% of total SNPs, 304 nonsynonymous singletons were tested with Polyphen to predict the protein damage caused by mutation. In total, we were able to detect 9 and 6 potentially functional rare SNPs for T2D and triglycerides, respectively, evoking a further step of replication genotyping in independent populations to prove their bona fide relevance to traits.

키워드

참고문헌

  1. Aulchenko, Y.S., Ripatti, S., Lindqvist, I., Boomsma, D., Heid, I.M., Pramstaller, P.P., Penninx, B.W., Janssens, A.C., Wilson, J.F., Spector, T., Martin, N.G., Pedersen, N.L., Kyvik, K.O., Kaprio, J., Hofman, A., Freimer, N.B., Jarvelin, M.R., Gyllensten, U., Campbell, H., Rudan, I., Johansson, A., Marroni, F., Hayward, C., Vitart, V., Jonasson, I., Pattaro, C., Wright, A., Hastie, N., Pichler, I., Hicks, A.A., Falchi, M., Willemsen, G., Hottenga, J.J., de Geus, E.J., Montgomery, G.W., Whitfield, J., Magnusson, P., Saharinen, J., Perola, M., Silander, K., Isaacs, A., Sijbrands, E.J., Uitterlinden, A.G., Witteman, J.C., Oostra, B.A., Elliott, P., Ruokonen, A., Sabatti, C., Gieger, C., Meitinger, T., Kronenberg, F., Döring, A., Wichmann, H.E., Smit, J.H., McCarthy, M.I., van Duijn, C.M., Peltonen, L., and ENGAGE Consortium. (2009). Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47-55. https://doi.org/10.1038/ng.269
  2. Cho, Y.S., Go, M.J., Kim, Y.J., Heo, J.Y., Oh, J.H., Ban, H.J., Yoon, D., Lee, M.H., Kim, D.J., Park, M., Cha, S.H., Kim, J.W., Han, B.G., Min, H., Ahn, Y., Park, M.S., Han, H.R., Jang, H.Y., Cho, E.Y., Lee, J.E., Cho, N.H., Shin, C., Park, T., Park, J.W., Lee, J.K., Cardon, L., Clarke, G., McCarthy, M.I., Lee, J.Y., Lee, J.K., Oh, B., and Kim, H.L. (2009). A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527-534. https://doi.org/10.1038/ng.357
  3. Choi, M., Scholl, U.I., Ji, W., Liu, T., Tikhonova, I.R., Zumbo, P., Nayir, A., Bakkaloğlu, A., Ozen, S., Sanjad, S., Nelson-Williams, C., Farhi, A., Mane, S., and Lifton, R.P. (2009). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 106, 19096-19101. https://doi.org/10.1073/pnas.0910672106
  4. Cirulli, E.T., and Goldstein, D.B. (2010). Uncovering the roles of rare variants in common disease through wholegenome sequencing. Nat. Rev. Genet. 11, 415-425. https://doi.org/10.1038/nrg2779
  5. Ewing, B., and Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186-194.
  6. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S., Boehnke, M., Clark, A.G., Eichler, E.E., Gibson, G., Haines, J.L., Mackay, T.F., McCarroll, S.A., and Visscher, P.M. (2009) Finding the missing heritability of complex diseases. Nature 461, 747-753. https://doi.org/10.1038/nature08494
  7. Ng, S.B., Buckingham, K.J., Lee, C., Bigham, A.W., Tabor, H.K., Dent, K.M., Huff, C.D., Shannon, P.T., Jabs, E.W., Nickerson, D.A., Shendure, J., and Bamshad, M.J. (2010). Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42, 30-35. https://doi.org/10.1038/ng.499
  8. Ng, S.B., Turner, E.H., Robertson, P.D., Flygare, S.D., Bigham, A.W., Lee, C., Shaffer, T., Wong, M., Bhattacharjee, A., Eichler, E.E., Bamshad, M., Nickerson, D.A., and Shendure, J. (2009). Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272-276. https://doi.org/10.1038/nature08250
  9. Rothberg, J.M., and Leamon, J.H. (2008). The development and impact of 454 sequencing. Nat. Biotechnol. 26, 1117-1124. https://doi.org/10.1038/nbt1485
  10. Shendure, J., Mitra, R.D., Varma, C., and Church, G.M. (2004). Advanced sequencing technologies: Methods and goals. Nat. Rev. Genet. 5, 335-344.
  11. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W. 3rd, Kondrashov, A.S., and Bork, P. (2001). Prediction of deleterious human alleles. Hum. Mol. Genet. 10, 591-597. https://doi.org/10.1093/hmg/10.6.591
  12. The International HapMap Consortium. (2005). A haplotype map of the human genome. Nature 437, 1299-1320. https://doi.org/10.1038/nature04226
  13. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001). The sequence of the human genome. Science 291, 1304-1351. https://doi.org/10.1126/science.1058040
  14. Zeggini, E., Scott, L.J., Saxena, R., Voight, B.F., Marchini, J.L., Hu, T., de Bakker, P.I., Abecasis, G.R., Almgren, P., Andersen, G., Ardlie, K., Bostrom, K.B., Bergman, R.N., Bonnycastle, L.L., Borch-Johnsen, K., Burtt, N.P., Chen, H., Chines, P.S., Daly, M.J., Deodhar, P., Ding, C.J., Doney, A.S., Duren, W.L., Elliott, K.S., Erdos, M.R., Frayling, T.M., Freathy, R.M., Gianniny, L., Grallert, H., Grarup, N., Groves, C.J., Guiducci, C., Hansen, T., Herder, C., Hitman, G.A., Hughes, T.E., Isomaa, B., Jackson, A.U., Jorgensen, T., Kong, A., Kubalanza, K., Kuruvilla, F.G., Kuusisto, J., Langenberg, C., Lango, H., Lauritzen, T., Li, Y., Lindgren, C.M., Lyssenko, V., Marvelle, A.F., Meisinger, C., Midthjell, K., Mohlke, K.L., Morken, M.A., Morris, A.D., Narisu, N., Nilsson, P., Owen, K.R., Palmer, C.N., Payne, F., Perry, J.R., Pettersen, E., Platou, C., Prokopenko, I., Qi, L., Qin, L., Rayner, N.W., Rees, M., Roix, J.J., Sandbaek, A., Shields, B., Sjogren, M., Steinthorsdottir, V., Stringham, H.M., Swift, A.J., Thorleifsson, G., Thorsteinsdottir, U., Timpson, N.J., Tuomi, T., Tuomilehto, J., Walker, M., Watanabe, R.M., Weedon, M.N., Willer, C.J.; Wellcome Trust Case Control Consortium, Illig, T., Hveem, K., Hu, F.B., Laakso, M., Stefansson, K., Pedersen, O., Wareham, N.J., Barroso, I., Hattersley, A.T., Collins, F.S., Groop, L., McCarthy, M.I., Boehnke, M., and Altshuler, D. (2008). Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638-645. https://doi.org/10.1038/ng.120

피인용 문헌

  1. Genome-Wide Association Studies of the Korea Association REsource (KARE) Consortium vol.8, pp.3, 2010, https://doi.org/10.5808/GI.2010.8.3.101