Variation of Seed Characteristic, Oil Content and Fatty Acid Composition in Sunflower Germplasm

해바라기 유전자원의 종실특성과 지방함량 및 지방산조성 변이

  • 이윤호 (충북대학교 농업생명환경대학) ;
  • 송항림 (충북대학교 농업생명환경대학) ;
  • 박향민 (충북대학교 농업생명환경대학) ;
  • 박경호 (충북대학교 농업생명환경대학) ;
  • 남상영 (충청북도 농업기술원) ;
  • 김인재 (충청북도 농업기술원) ;
  • 최성열 (충청북도 농업기술원) ;
  • 장영석 (농촌진흥청 국립식량과학원) ;
  • 김홍식 (충북대학교 농업생명환경대학)
  • Published : 2010.09.30

Abstract

The objective of this study was to obtain the basic informations on variability of germplasm and cultivation practice for the production of biodiesel in sunflower. A total of 275 accessions obtained from the National Agrobiodiversity Center (34 landraces from Korea, 219 and 22 introductions from America and other countries, respectively) were screened to evaluate variations of seed characteristics, oil content and fatty acid composition. Seed types were classified into 4 types (broad ovoid, narrow ovoid, rounded and elongated). The broad ovoid type was the highest proportion of 40.4%, while the elongated type was the lowest proportion of 5.0% among accessions. Also, the seed colors were classified into 4 colors (gray, brown, black and white). Gray and brown seed color showed the highest distribution and white seed color showed the lowest among accessions, respectively. Hundred and one liter seed weight ranged 2.9~15.5g and 178~439g with averages of 6.3g and 322.0g, respectively. Oil content ranged from 11.7% to 45.6% with an average of 25.5%. The frequency distribution of oil content showed the highest in range of 22~28% and the lowest in range of over 40%. Three promising accessions with higher oil content than 40.0% were IT031967, IT031970 and IT031965 introduced from America. Palmitic and stearic acid contents, saturated fatty acid, ranged 3.1~7.6% and 1.3~4.1% with averages of 4.7% and 2.2%, respectively, and a total content of saturated fatty acid ranged 5.4~9.4% with an average of 6.9%. Oleic and linoleic acid contents, unsaturated fatty acid, ranged 18.1~75.7% and 18.1~74.1% with averages of 55.2% and 38.0%, respectively. Five accessions, IT031831, IT031669, IT031895, IT031938 and IT031694, showed higher oleic acid content than 70%. A total content of unsaturated fatty acid ranged 89.6~94.8% with an average of 93.0%.

해바라기의 바이오디젤 생산을 위한 품종 육성과 생산기술의 기초자료를 얻기 위하여 한국자원 34종, 미국자원 219종 및 그 외의 다른 국가로부터 도입된 자원 22종을 포함한 총 275종의 유전자원을 농촌진흥청 농업유전자원센터로부터 분양받아 종실특성과 지방함량 및 지방산 변이 조성을 구명한 결과는 다음과 같다. 1. 종실의 형태는 광난형, 협난형, 원형 및 장형으로 구분되었으며, 광란형이 40.4%로 가장 많았으며, 장형이 5.0%로 가장 적었다. 종실의 과피색은 회색종, 갈색종, 흑색종 및 백색종으로 구분되었고, 회색종과 갈색종이 많았고 백색종이 적었다. 100립중과 $1{\ell}$ 중의 평균은 각각 6.3 g 및 322.5 g이었고, 분포범위도 각각 2.9~15.5 g 및 178~43 9 g이었다. 2. 해바라기 유전자원의 지방함량의 평균은 25.5%이었고, 그 범위는 11.7~45.6%이었다. 지방함량의 분포는 22~28%의 범위가 가장 많았고, 40%이상이 가장 적었으며, 지방함량이 40%이상으로 높은 유망자원은 미국 도입자원인 IT031967, IT031970 및 IT031965의 3종이었다. 3. 포화지방산인 팔미트산 함량의 평균은 4.7%이었으며, 범위는 3.1~7.6%, 스테아린산 함량의 평균은 2.2%, 범위는 1.3~4.1%이었고, 포화지방산(팔미트산 + 스테아린산) 함량의 평균은 6.9%, 범위는 5.4~9.4%이었다. 4. 불포화지방산인 올레산의 평균함량은 55.2%이었고 18.1~75.5%의 범위이었으며, 올레산이 70% 이상인 자원은 IT031831, IT031699, IT031895, IT031938 및 IT031694의 5종이었다. 리놀레산의 평균함량은 38.0%이었으며 범위는 18.1~74.1%이었다. 불포화지방산(올레산+리놀레산)의 평균 함량은 93%, 범위는 89.6%~94.8%이었다.

Keywords

References

  1. Arkansas Biofuel Enterprises. 2007. Crop yields in gallons. Available at http://home.earthlink/~arkansabiofuels/id33.html. Arkansas Bio-Fuels Enterprises, AR.
  2. Burton, J. W., J. F. Miler, B. A. Vick, R. Scarth, and C. C. Holbbrook. 2004. Altering fatty acid composition in oil seed crops. Adv. Agron. 84 : 273-306. https://doi.org/10.1016/S0065-2113(04)84006-9
  3. Cabrini, L., V. Barzanti, M. Cipollone, D. Fiorentini, G. Grossi, B. Tolomelli, and L. Zambonin. 2001. Antioxidants and total peroxyl radical-trapping ability of olive and seed oils. J. Agric. Food Chem. 49 : 6026-6032. https://doi.org/10.1021/jf010837t
  4. Demirbas, A. 2007. Bio diesel from sunflower oil in supercritical methanol with calcium oxide. Energy Conservation and Management. 48 : 937-941. https://doi.org/10.1016/j.enconman.2006.08.004
  5. Encinar, J. M., J. F. González, and A. Rodriguez-Reinares. 2007. Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Processing Technology. 88 : 513-522. https://doi.org/10.1016/j.fuproc.2007.01.002
  6. National Guidelines for the conduct of tests for distinctness, uniformity and stability on sunflower. 2006. Government of India. pp. 20.
  7. Grundy, S. M. 1986. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. N. Engl. J. Med. 314 : 745-748. https://doi.org/10.1056/NEJM198603203141204
  8. Hardin, B. 1998. Mid-oleic acid sunflower hybrids debut. Agric. Res. 46(6) : 14-15.
  9. Heiser, C. B. 1951. The sunflower among the North America Indians. Proceedings of the America Philosophical Society. 95 : 432-448.
  10. Kim, I. J. S. Y. Nam, Y. H. Lee, S. J. Kim, S. Y. Choi, C. W. Rho, J. G. Lee, I. G. Song, and H. S. Kim. 2010. Agronomic characteristics of Sunflower (Helianthus annuus L.) collections. Korean J. Plant Res. 23(1) : 1-6.
  11. Kleingartner, L. W. 2002. NuSun sunflower oil : Redirection of an industry. p. 135-138. In J. Janick and A. Whipkey(ed.) Trends in new crops and new uses. ASHS Press, Alexandria, VA.
  12. Kris-Etherton, P. M. and S. Yu. 1997. Individual fatty acid effects on plasma lipids and lipoprotens : human studies. Am. J. Clin. Nutr. 65 : 1628S-1644S. https://doi.org/10.1093/ajcn/65.5.1628S
  13. National sunflower association. 2009. National Sunflower Association : Sunflower seed kernel. Available at http://www.sunflower nsa.com/seed/. NSA, Bismarck, ND.
  14. Pereyra-Irujo, G. A, N. G. Izquierdo, M. Covi, S. M. Nolasco, F. Quiroz, and L.A.N. Aguirreabal. 2009. Variability in sunflower oil quality for biodiesel production: A simulation study. Biomass and bioenergy. 33 : 459-468. https://doi.org/10.1016/j.biombioe.2008.07.007
  15. Piva, G., A. Bouniols and G. Mondies. 2000. Effect of cultural condition on yield, oil content and fatty acid composition of sunflower kernel. p. 61-66. In proc. Int. Sunflower Conf., 15th, Toulouse, France. 12-15 June, 2000.
  16. Putt, E. D. 1997. Sunflower early history. In 'sunflower technology and production. Agronomy 35'. (Ed. AA Schneiter) pp. 1-19 (American Society of Agronomy, Crop Society of America, Soil Science Society of America :Madison, WI).
  17. Rakopoulos, C. D., D. T. Hountalas, E. G. Giakoumis, and E. C. Andritsakis. 2008. Performance and emissions of bus engine using blends of dieselfuel with bio-diesel of sunflower or cottonseed oils derived from Greek feedstock. Fuel. 87 : 147-157. https://doi.org/10.1016/j.fuel.2007.04.011
  18. Ramos, M. J., C. M. Fernandez, A. Casas, L. Rodriguez, and A. Perez. 2009. Influence of fatty acid composition of raw material on biodiesel properties. Bioresour. Technol. 100 : 261-268. https://doi.org/10.1016/j.biortech.2008.06.039
  19. Sackston, W. E. 1992. On a treadmill; breeding sunflower for resistance to disease. Annual Review of phytopathology 30 : 529-551. https://doi.org/10.1146/annurev.py.30.090192.002525
  20. Schilling, E. E. 2006. Helianthus. In: Flora of North America Editorial Committee (Eds.), Flora of North America North of Mexico, Oxford University Press, New York and Oxford 21 : 141-169.
  21. Seiler, G. J. 1986. Analysis of the relationships of environmental factors with seed oil and fatty acid concentrations of wild sunflower. Field Crops Res.15 : 57-72. https://doi.org/10.1016/0378-4290(86)90101-2
  22. Seiler, G. J., T. J. Gulya, and G. Kong. 2010. Oil concentration and fatty acid profile of wild Helianthus species from the southeastern United States. J. Ind Crop 31 : 527-533. https://doi.org/10.1016/j.indcrop.2010.02.007
  23. Shahid, E. M. and Y. Jamal. 2008. A review of biodiesel as vehicular fuel. Renewable & Sustainable Energy Reviews 12 : 2484-2494.
  24. Skoric, D., S. Jocic, Z. Sakac, and N. Lecic. 2008. Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can. J. Physiol. Pharmacol. 86 : 1-7. https://doi.org/10.1139/Y07-125
  25. Soldatov, K. I. 1976. Chemical mutagensis in sunflower breeding. 352-357. in proc. int. conf., 7th, Krasnoda, USSR. 27 June-3 July 1976. Int. sunflower assoc. prees, Vlaardingen, the Netherlands.
  26. Steer, B.T. and G.J. Seiler. 1990. Changes in fatty acid composition on sunflower (Helianthus annuus) seeds in response to time of nitrogen application, supply rates and defoliation. J. Sci. Food Agric. 51 : 11-26. https://doi.org/10.1002/jsfa.2740510103
  27. Temme, E H., R. P. Mensink, and G. Hornstra. 1996. Comparison of the effects of diets enriched in lauric, palmitic, or oleic acids serum lipids and lipoproteins in helthy women and. Am. J. Clin. Nutr. 63 : 897-903. https://doi.org/10.1093/ajcn/63.6.897
  28. Vick, B. A., C. C. Jan, and J. F. Miller. 2007. Registration of sunflower genetic stock RS3 with reduced saturated palmitic and stearic acid. J. Plant Reg. 1 : 80. https://doi.org/10.3198/jpr2006.10.0642crs
  29. Warner, K., B. A. Vick, L. Kleningartner, R. Isaak, and K. Doroff. 2003. Compositions of sunflower, NuSun(mid-oleic sunflower) and high-oleic sunflower oils. Proc. Sunflower Res. Workshop, Fargo, ND.16-17 Jan. National Sunflower Association, Bismarck, ND.
  30. 한국표준색표집. 2003. 이화여대색채디자연구소. pp. 100.