Pain, Acupuncture and Brain Imaging

통증, 침술 및 뇌영상

  • Kwak, Yong-Ho (Department of Physiology, Yonsei University College of Medicine) ;
  • Won, Ran (Department of Biomedical Laboratory Science, Division of Health Science, Dongseo University) ;
  • Lee, Hye-Jung (Acupuncture and Meridian Science Research Center, Kyung Hee University) ;
  • Lee, Bae-Hwan (Department of Physiology, Yonsei University College of Medicine)
  • 곽용호 (연세대학교 의과대학 생리학교실) ;
  • 원란 (동서대학교 보건의학계열 임상병리학과) ;
  • 이혜정 (경희대학교 침구경락과학연구센터) ;
  • 이배환 (연세대학교 의과대학 생리학교실)
  • Received : 2010.08.26
  • Accepted : 2010.09.16
  • Published : 2010.09.30

Abstract

Pain is very complex and multi-level experience that should be objective or subjective. Acupuncture is a traditional method to heal the pain and have been based on meridian theory. There have been many clinical evidences showing the pain-relieving effect of acupuncture but science-based understanding of it was poor. Furthermore in daily life, we feel huge gap between the source of pain and pain control by acupuncture stimulation. However, the underlying connection between pain control and acupuncture stimulation has been reported in many recent reports. In this paper, we briefly introduce the brain imaging techniques (functional magnetic resonance images, positron emission tomography, electroencephalograph, and magnetoencephalography) and review researches in pain and acupuncture. Through this, the brain areas that activated by pain and acupuncture will be verified, and compared each other regarding their specificity and similarity. In addition, detailed understanding of brain function which is related to pain and acupuncture analgesia through brain imaging techniques will be discussed.

통증은 매우 복합적이고 다양한 수준의 경험으로 주관적이거나 객관적일 수 있다. 침술은 통증을 치료하기 위한 아주 오래된 방법이며, 경락 이론을 바탕으로 한다. 침의 효과에 대한 임상적 결과들은 수없이 많이 있지만, 그 기능에 대한 과학적인 이해는 부족한 상태이다. 또한, 실생활에서의 통증 유발 원인과 침술을 통한 통증 억제 또는 치료는 그 차이가 매우 크게 느껴진다. 그러나 최근 연구들을 통해 통증과 침술의 관련성이 밝혀지고 있다. 본 논문에서는 최근 급격히 발달하고 있는 뇌영상 기술들(functional magnetic resonance images, 및 positron emission tomography, electroencephalograph, magnetoencephalography)을 간략히 살펴보고, 이들을 이용한 통증 및 침술 연구들을 살펴보고자 한다. 통증과 침술에 관여하는 뇌 영역들을 확인하여, 이 둘의 유사성 및 차이를 비교하고, 뇌영상 기술을 통해 밝혀지는 뇌의 정보처리 과정을 통해 통증과 침술에 대한 이해를 넓히고자 한다.

Keywords

References

  1. Apkarian, A. V., Bushnell, M. C., Treede, R. D., & Zubieta, J. K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9(4), 463-484.
  2. Biella, G., Sotgiu, M. L., Pellegata, G., Paulesu, E., Castiglioni, I., & Fazio, F. (2001). Acupuncture produces central activations in pain regions. Neuroimage, 14(1), 60-66.
  3. Bingel, U., Quante, M., Knab, R., Bromm, B., Weiller, C., & Büchel, C. (2002). Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain, 99(1-2), 313-321.
  4. Bingel, U., Quante, M., Knab, R., Bromm, B., Weiller, C., & Buchel, C. (2003). Single trial fMRI reveals significant contralateral bias in responses to laser pain within thalamus and somatosensory cortices. Neuroimage, 18(3), 740-748.
  5. Bishop, B. (1980). Pain: Its physiology and rationale for management: Part I. Neuroanatomical substrate of pain. Physical Therapy, 60(1), 13-20.
  6. Brooks, J. C. W., Nurmikko, T. J., Bimson, W. E., Singh, K. D., & Roberts, N. (2002). fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage, 15(2), 293-301.
  7. Burton, H., Videen, T., & Raichle, M. (1993). Tactile-vibration-activated foci in insular and parietalopercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosensory & Motor Research, 10(3), 297-308.
  8. Casey, K. L., Minoshima, S., Morrow, T. J., & Koeppe, R. A. (1996). Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology, 76(1), 571-581.
  9. Casey, K. L., Morrow, T. J., Lorenz, J., & Minoshima, S. (2001). Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology, 85(2), 951-959.
  10. Chen, A. C. N., Liu, F. J., Wang, L., & Arendt-Nielsen, L. (2006). Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging. Neuroimage, 29(4), 1080-1091.
  11. Cho, Z. H., Chung, S. C., Jones, J. P., Park, J. B., Park, H. J., Lee, H. J., Wong, E. K. & Min, B. I. (1998). New findings of the correlation between acupoints and corresponding brain cortices using functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2670-2673.
  12. Danziger, N., Faillenot, I., & Peyron, R. (2009). Can we share a pain we never felt? Neural correlates of empathy in patients with congenital insensitivity to pain. Neuron, 61(2), 203-212.
  13. de Leeuw, R., Davis, C. E., Albuquerque, R., Carlson, C. R., & Andersen, A. H. (2006). Brain activity during stimulation of the trigeminal nerve with noxious heat. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 102(6), 750-757.
  14. Derbyshire, S. W., Jones, A. K., Devani, P., Friston, K. J., Feinmann, C., Harris, M., Pearce, S., Watson J. D.,G., & Frackowiak, R. S. J. (1994). Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. Journal of Neurology, Neurosurgery & Psychiatry, 57, 1166-1172.
  15. Freund, W., Wunderlich, A. P., Stuber, G., Landwehrmeyer, B., & Klug, R. (2010). Graded cutaneous electrical vs. thermal stimulation in humans shows different insular and cingulate cortex activation. Somatosensory & Motor Research, 27(1), 15-27.
  16. Hamalainen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography; theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), 413-497.
  17. Helmchen, C., Mohr, C., Erdmann, C., Binkofski, F., & Büchel, C. (2006). Neural activity related to selfversus externally generated painful stimuli reveals distinct differences in the lateral pain system in a parametric fMRI study. Human Brain Mapping, 27(9), 755-765.
  18. Hsieh, J. C., Stahle-Backdahl, M., Hagermark, O., Stone- Elander, S., Rosenquist, G., & Ingvar, M. (1995). Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study. Pain, 64(2), 303-314.
  19. Hui, K. K. S., Liu, J., Marina, O., Napadow, V., Haselgrove, C., Kwong, K. K., Kennedy D. N., & Makris N. (2005). The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage, 27(3), 479-496.
  20. Kakigi, R., Inui, K., Tran, D. T., Qiu, Y., Wang, X., Watanabe, S., & Hoshiyama, M. (2004). Human brain processing and central mechanisms of pain as observed by electro- and magneto-encephalography. Journal of the Chinese Medical Association, 67(8), 377-386.
  21. Kong, J., Gollub, R. L., Rosman, I. S., Webb, J. M., Vangel, M. G., Kirsch, I., & Kaptchuk, T. J. (2006). Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. Journal of Neuroscience, 26(2), 381-388.
  22. Kong, J., Gollub, R. L., Polich, G., Kirsch, I., LaViolette, P., Vangel, M., Rosen, B., & Kaptchuk, T. J. (2008). A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. Journal of Neuroscience, 28(49), 13354-13362.
  23. Lee, J. H., Durand, R., Gradinaru, V., Zhang, F., Goshen, I., Kim, D. S., Fenno, L. E., Ramakrishnan, C., & Deisseroth, K. (2010). Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature, 465, 788-792.
  24. Leknes, S., & Tracey, I. (2008). A common neurobiology for pain and pleasure. Nature Review Neuroscience, 9(4), 314-320.
  25. Loggia, M. L., Mogil, J. S., & Bushnell, M. C. (2008). Empathy hurts: Compassion for another increases both sensory and affective components of pain perception. Pain, 136(1-2), 168-176.
  26. Maihofner, C., & Handwerker, H. O. (2005). Differential coding of hyperalgesia in the human brain: A functional MRI study. Neuroimage, 28(4), 996-1006.
  27. May, A. (2007). Neuroimaging: visualising the brain in pain. Neurological Sciences, 28, Suppl. 2, S101-S107.
  28. Mazzola, L., Isnard, J., Peyron, R., Guénot, M., & Mauguière, F. (2009). Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain, 146(1-2), 99-104.
  29. Merskey, H., (1979). Pain terms; a list with definitions and notes on usage. recommended by the IASP Subcommittee on Taxonomy, Pain 6, 249-252.
  30. Napadow, V., Dhond, R. P., Kim, J., LaCount, L., Vangel, M., Harris, R. E., Kettner N., & Park K. (2009). Brain encoding of acupuncture sensation - Coupling on-line rating with fMRI. Neuroimage, 47(3), 1055-1065.
  31. Niedermeyer, E., & Lopes, D. S. F. (2004). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincot Williams & Wilkins.
  32. NIH, (1997). Acupuncture: National Institutes of Health Consensus Development Conference Statement Online, November 3th-5th, 15(5), 1-34.
  33. Nunez, P., & Srinivasan, R. (1981). Electric fields of the brain: The Neurophysics of EEG, Oxford University Press.
  34. Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14(1), 68-78.
  35. Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., & Mauguiere, F. (2002). Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cerebral Cortex, 12(4), 376-385.
  36. Pariente, J., White, P., Frackowiak, R. S. J., & Lewith, G. (2005). Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. Neuroimage, 25(4), 1161-1167.
  37. Petrovic, P., Ingvar, M., Stone-Elander, S., Petersson, K. M., & Hansson, P. (1999). A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain, 83(3), 459-470.
  38. Robertson, J. A., Théberge, J., Weller, J., Drost, D. J., Prato, F. S., & Thomas, A. W. (2010). Low-frequency pulsed electromagnetic field exposure can alter neuroprocessing in humans. Journal of The Royal Society Interface, 7(44), 467-473.
  39. Rosen, S. D., Paulesu, E., Frith, C. D., Frackowiak, R. S. J., Davies, G. J., Jones, T., & Camici, P. G. (1994). Central nervous pathways mediating angina pectoris. The Lancet, 344(8916), 147-150.
  40. Roy, C. S., & Sherrington, C. S. (1890). On the Regulation of the Blood-supply of the Brain. The Journal of Physiology, 11(1-2), 85-158.
  41. Siedentopf, C. M., Golaszewski, S. M., Mottaghy, F. M., Ruff, C. C., Felber, S., & Schlager, A. (2002). Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neuroscience Letters, 327(1), 53-56.
  42. Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303, 1157-1162.
  43. Singer, T., Seymour, B., O'Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439, 466-469.
  44. Sung, E. J., Yoo, S. S., Yoon, H. W., Oh, S. S., Han, Y., & Park, H. W. (2007). Brain activation related to affective dimension during thermal stimulation in humans: A functional magnetic resonance imaging study. International Journal of Neuroscience, 117(7), 1011-1027.
  45. Takahashi, H., Kato, M., Matsuura, M., Mobbs, D., Suhara, T., & Okubo, Y. (2009). When your gain is my pain and your pain is my gain: Neural correlates of envy and schadenfreude. Science, 323, 937-939.
  46. Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J., & Mullani, N. A. 1975). A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology, 114(1), 89-98.
  47. Tracey, I., & Mantyh, P. W. (2007). The cerebral signature for pain perception and its modulation. Neuron, 55(3), 377-391.
  48. Tran, T. D., Lam, K., Hoshiyama, M., & Kakigi, R. (2001). A new method for measuring the conduction velocities of A-beta, A-delta and C-fibers following electric and CO2 laser stimulation in humans. Neuroscience Letters, 301(3), 187-190.
  49. Tran, T. D., Inui, K., Hoshiyama, M., Lam, K., Qiu, Y., & Kakigi, R. (2002). Cerebral activation by the signals ascending through unmyelinated C-fibers in humans: a magnetoencephalographic study. Neuroscience, 113(2), 375-386.
  50. Ulett, G. A., Han, S., & Han, J. S. (1998). Electroacupuncture: mechanisms and clinical application. Biological Psychiatry, 44(2), 129-138.
  51. Wang, G. J., Ayati, M. H., & Zhang, W. B. (2010). Meridian studies in China: A systematic review. Journal of Acupuncture and Meridian Studies, 3(1), 1-9.
  52. Wu, M.. T., Hsieh, J. C., Xiong, J., Yang, C. F., Pan, H. B., Chen, Y. C. I., Tsai G., Rosen B. R., & Kwong K. K. (1999). Central nervous pathway for acupuncture stimulation: Localization of processing with functional MR imaging of the brain-Preliminary experience. Radiology, 212(1), 133-141.
  53. Wu, M.. T., Sheen, J. M., Chuang, K. H., Yang, P., Chin, S. L., Tsai, C. Y., Chen C. J., Liao J. R., Chu K. A., Pan H. B., & Yang C. F. (2002). Neuronal specificity of acupuncture response: A fMRI study with electroacupuncture. Neuroimage, 16(4), 1028-1037.
  54. Yan, B., Li, K., Xu, J., Wang, W., Li, K., Liu, H., Shan, B., & Tang, X. (2005). Acupoint-specific fMRI patterns in human brain. Neuroscience Letters, 383(3), 236-240.
  55. Yoo, S. S., Teh, E. K., Blinder, R. A., & Jolesz, F. A. (2004). Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study. Neuroimage, 22(2), 932-940.
  56. Zhang, W. T., Jin, Z., Luo, F., Zhang, L., Zeng, Y. W., & Han, J. S. (2004). Evidence from brain imaging with fMRI supporting functional specificity of acupoints in humans. Neuroscience Letters, 354(1), 50-53.
  57. Zhao, Z. Q. (2008). Neural mechanism underlying acupuncture analgesia. Progress in Neurobiology, 85(4), 355-375.