DOI QR코드

DOI QR Code

Design and Implementation of 3.3 kW On-Board Battery Charger for Electric Vehicles

전기자동차용 3.3 kW 탑재형 배터리 충전기 설계 및 제작

  • 김종수 (성균관대 정보통신공학부) ;
  • 최규영 (성균관대 정보통신공학부) ;
  • 정혜만 (성균관대 정보통신공학부) ;
  • 이병국 (성균관대 정보통신공학부) ;
  • 조영진 (삼성전기 중앙연구소)
  • Received : 2010.07.27
  • Accepted : 2010.08.13
  • Published : 2010.10.20

Abstract

This paper presents a design and implementation of 3.3 kW on-board battery charger for electric vehicles or plug-in hybrid electric vehicles. Considering characteristics of the electric vehicles, a series-loaded resonant dc-dc converter and frequency control scheme are adopted to improve efficiency and reliability, and to reduce volume and cost. The developed on-board battery charger is designed and implemented by using high frequency of 80-130 kHz and zero voltage switching method. The experimental result indicates 92.5% of the maximum efficiency, 5.84 liters in volume, and 5.8kg in weight through optimal hardware design.

본 논문은 전기자동차 (Electric Vehicles, EVs) 및 플러그인 하이브리드 자동차 (Plug-In Hybrid Electric Vehicles, PHEVs)용 리튬 이온 (Li-Ion) 배터리 충전을 위한 3.3 kW급 차량 탑재형 (On-Board) 충전기 하드웨어의 설계 및 제작에 대하여 기술한다. 차량 실장 특성을 고려하여 부하직렬공진형 dc-dc 컨버터를 적용하고, 80-130kHz의 고주파 스위칭 및 ZVS (Zero-Voltage Switching) 기법을 통해 수동소자의 크기를 최적화하여 5.84L, 5.8kg의 저부피, 경량을 달성한다. 전자부하를 대상으로 정전류 (Constant Current, CC) 및 정전압 (Constant Voltage, CV) 제어를 수행하여 92.5%의 고효율 획득 및 성능을 검증한다.

Keywords

References

  1. M. M. Morcos, C. R. Mersman, G. G. Sugavanam, and N. G. Dillman, "Battery chargers for electric vehicles", IEEE Power engineering Review, pp. 8-11, 2000, November.
  2. Y. C. Chiang, Y. L. Ke, H. S. Chuang, and H. K. Chen, "Implementation and analysis of an improved series-loaded resonant dcdc converter operating above resonance for battery chargers", IEEE Industrial and Commercial Power Systems Technical Conference (ICPS) 2008, pp. 1-8, 2008, May.
  3. Y. C. Chuang and Y. L. Ke, "High-efficiency and low-stress ZVT-PWM DC-to-DC converter for battery charger", IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 3030-3037, 2008, August.
  4. J. J. Chen, F. C. Yang, C. C. Lai, Y. S. Hwang, and R. G. Lee, "A highefficiency multimode Li-Ion battery charger with variable current source and controlling previous-stage supply voltage", IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2469-2478, 2009, July. https://doi.org/10.1109/TIE.2009.2018435
  5. S. Y. Tseng, T. C. Shin, S. Y. Fan, and G. K. Chang, "Design and implementation of lithium-ion/lithiumpolymer battery charger with impedance compensation", IEEE International Conference on Power Electronics and Drive Systems (PEDS) 2009, pp. 866-870, 2009, November.
  6. 곽동걸, "소프트 스위칭형 PFC 벅-부스트 AC-DC 컨버 터에 관한 연구", 전력전자학회 논문지, Vol. 12, No. 6, pp. 465-471, 2007. 12.
  7. R. L. Steigerwald, "A comparison of half-bridge resonant converer topologies", IEEE Trans. Power. Electron., Vol. 3, No. 2, pp. 174-182, 1988, April. https://doi.org/10.1109/63.4347
  8. 김은수, 강성인, 정봉근, 차인수, 윤정필, "SLLC 직렬공진 컨버터 적용 승압형 DC/DC 컨버터", 전력전자학회 논문지, Vol. 12, No. 1, pp. 56-64, 2007.
  9. 김재형, 원충연, 이태원, "고효율 파워소자를 이용한 3.3kW PV-PCS의 Boost Converter 효율 개선", 전력전자학회지, Vol. 14, No. 1, pp. 40-44, 2009.
  10. U. Nicolai, T. Reimann, L. Petzoldt, J. Lutz, "Application manual power modules", SEMIKRON International,[Online]. Available:http://www.semikron. com/skcompub/en/application_manual-193.htm

Cited by

  1. Implementation of Non-time-varying Duty Ratio Transfer Function for Improvement of Control Characteristics Bi-directional Charger vol.19, pp.2, 2014, https://doi.org/10.6113/TKPE.2014.19.2.124
  2. Variable Output and Parallel Operation Control of EV Charger vol.18, pp.2, 2013, https://doi.org/10.6113/TKPE.2013.18.2.153