유산균 대사공학 기술의 개발 현황

Current Strategies for Metabolic Engineering of Lactic Acid Bacteria

  • Han, Nam-Soo (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Cho, Seung-Kee (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, Yu-Jin (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
  • 투고 : 2010.07.21
  • 심사 : 2010.08.22
  • 발행 : 2010.08.31

초록

Lactic acid bacteria display a relatively simple metabolism wherein the sugar is converted mainly to lactic acid. The extensive knowledge of metabolic pathways and the increasing information of the genes involved allows for the rerouting of natural metabolic pathways by genetic and physiological engineering. In this contribution, the lactic acid bacteria as an efficient cell factory for different (food) ingredients will be presented. The emphasis will be on some successful examples of metabolic engineering and on the physiology of these bacteria, which makes them so suitable as a cell factory.

키워드

참고문헌

  1. Smid, E. J., D. Molenaar, J. Hugenholtz, W. M. de Vos, and B. Teusink (2005) Functional ingredient production: application of global metabolic models. Curr. Opin. Biotech. 16: 190-197. https://doi.org/10.1016/j.copbio.2005.03.001
  2. Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu (2004) Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Biotechnol. Bioeng. 88: 681-689. https://doi.org/10.1002/bit.20274
  3. von Wright, A. and M. Sibakov (1998) Genetic modification of lactic acid bacteria. pp. 161-210. In: S. Salminen, and A. von Wright (Eds.), Lactic Acid Bacteria: Microbiology and Functional Aspects. 2nd ed., Marcel and Dekker, Inc., NY, USA.
  4. Mills, D. A. (2001) Mutagenesis in the post genomics era: tools for generating insertional mutations in the lactic acid bacteria. Curr. Opin. Biotechnol. 12: 503-509. https://doi.org/10.1016/S0958-1669(00)00254-8
  5. Morelli, L., F. K. Vogensen, and A. von Wright (2004) Genetics of lactic acid bacteria. pp. 249-293. In: S. Salminen, A. von Wright, and A. Ouwehand (Eds.), Lactic Acid Bacteria: Microbiological and Functional Aspects. 3rd rev. and exp. ed. Marcel Dekker, Inc., NY, USA.
  6. Serror, P., T. Sasaki, S. D. Ehrlich, and E. Maguin (2002) Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with various plasmids. Appl. Environ. Microb. 68: 46-52. https://doi.org/10.1128/AEM.68.1.46-52.2002
  7. Kim, Y. H., K. S. Han, S. Oh, S. You, and S. H. Kim (2005) Optimization of technical conditions for the transformation of Lactobacillus acidophilus strains by electroporation. J. Appl. Microbiol. 99: 167-174. https://doi.org/10.1111/j.1365-2672.2005.02563.x
  8. Berthier, F., M. Zagorec, M. Champomier-Verges, S. D. Ehrlich, and F. Morel-Deville (1996) Efficient transformation of Lactobacillus sake by electroporation. Microbiology 142: 1273-1279. https://doi.org/10.1099/13500872-142-5-1273
  9. Wei, M.-Q., C. M. Rush, J. M. Norman, L. M. Hafner, R. J. Epping, and P. Timms (1995) An improved method for the transformation of Lactobacillus strains using electroporation. J. Microbiol. Meth. 21: 97-109. https://doi.org/10.1016/0167-7012(94)00038-9
  10. Perez-Arellano, I., M. Zuniga, and G. Perez-Martinez (2001) Construction of compatible wide host-range shuttle vectors for lactic acid bacteria and Escherichia coli. Plasmid 46: 106-116. https://doi.org/10.1006/plas.2001.1531
  11. Shareck, J., Y. Choi, B. Lee, and C. B. Miguez (2004) Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit. Rev. Biotechnol. 24: 155-208. https://doi.org/10.1080/07388550490904288
  12. Maguin, E., P. Duwat, T. Hege, D. Ehrlich, and A. Gruss (1992) New thermosensitive plasmid for grampositive bacteria. J. Bacteriol. 174: 5633-5638. https://doi.org/10.1128/jb.174.17.5633-5638.1992
  13. Leenhouts, K., G. Buist, A. Bolhuis, A. Berge, J. Kiel, I. Mierau, M. Dabrowska, G. Venema, and J. Kok (1996) A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol. Gen. Genet. 253: 217-224. https://doi.org/10.1007/s004380050315
  14. Russell, W. M. and T. R. Klaenhammer (2001) Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl. Environ. Microbiol. 67: 4361-4364. https://doi.org/10.1128/AEM.67.9.4361-4364.2001
  15. Neu, T. and B. Henrich (2003) New thermosensitive delivery vector and its use to enable nisin controlled gene expression in Lactobacillus gasseri. Appl. Environ. Microbiol. 69: 1377-1382. https://doi.org/10.1128/AEM.69.3.1377-1382.2003
  16. Kuipers, O. P., P. G. de Ruyter, M. Kleerebezem, and W. M. de Vos (1997) Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 15: 135-140. https://doi.org/10.1016/S0167-7799(97)01029-9
  17. Jensen, P. R. and K. Hammer (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82-87.
  18. Solem, C. and P. R. Jensen (2002) Modulation of gene expression made easy. Appl. Environ. Microbiol. 68: 2397-2403. https://doi.org/10.1128/AEM.68.5.2397-2403.2002
  19. Oliveira, A. P., J. Nielsen, and J. Forster (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5: 39. https://doi.org/10.1186/1471-2180-5-39
  20. Teusink, B., F. H. van Enckevort, C. Francke, A. Wiersma, A. Wegkamp, E. J., Smid, and R. J. Siezen (2005) In silico reconstruction of the metabolic pathways of Lactobacillus plantarum: comparing predictions of nutrient requirements with those from growth experiments. Appl. Environ. Microbiol. 71: 7253-7262. https://doi.org/10.1128/AEM.71.11.7253-7262.2005
  21. Pastink, M. I., B. Teusink, P. Hols, S. Visser, W. M. de Vos, and J. Hugenholtz (2009) Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75: 3627-3633. https://doi.org/10.1128/AEM.00138-09
  22. Kleerebezem, M. and J. Hugenholtz (2003) Metabolic pathway engineering in lactic acid bacteria. Curr. Opin. Biotech. 14: 232-237. https://doi.org/10.1016/S0958-1669(03)00033-8
  23. Lapierre, L., J. E. Germond, A. Ott, M. Delley, and B. Mollet (1999) D-Lactate dehydrogenase gene (ldhD) inactivation and resulting metabolic effects in the Lactobacillus johnsonii strains La1 and N312. Appl. Environ. Microb. 65: 4002-4007.
  24. Goffin, P., M. Deghorain, J. L. Mainardi, I. Tytgat, M. C. Champomier-Verges, M.Kleerebezem, and P. Hols (2005) Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J. Bacteriol. 187: 6750-6761. https://doi.org/10.1128/JB.187.19.6750-6761.2005
  25. Bhowmik, T. and J. L. Steele (1994) Cloning, characterization and insertional inactivation of the Lactobacillus helveticus D(-) lactate dehydrogenase gene. Appl. Microbiol. Biot. 41: 432-439.
  26. Kyla-Nikkila, K., M. Hujanen, M. Leisola, and A. Palva (2000) Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Appl. Environ. Microb. 66: 3835-3841. https://doi.org/10.1128/AEM.66.9.3835-3841.2000
  27. Ferain, T., J. N. Hobbs Jr., J. Richardson, N. Bernard, D. Garmyn, P. Hols, N. E. Allen, and J. Delcour (1996) Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J. Bacteriol. 178: 5431-5437. https://doi.org/10.1128/jb.178.18.5431-5437.1996
  28. Ferain, T., D. Garmyn, N. Bernard, P. Hols, and J. Delcour (1994) Lactobacillus plantarum ldhL gene: overexpression and deletion. J. Bacteriol. 176: 596-601. https://doi.org/10.1128/jb.176.3.596-601.1994
  29. Kleerebezem, M., P. Hols, and J. Hugenholtz (2000) Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme Microb. Tech. 26: 840-848. https://doi.org/10.1016/S0141-0229(00)00180-0
  30. Hugenholtz, J., M. Kleerebezem, M. Starrenburg, J. Delcour, W. de Vos, and P. Hols (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl. Environ. Microbiol. 66: 4112-4114. https://doi.org/10.1128/AEM.66.9.4112-4114.2000
  31. Hols, P., A. Ramos, J. Hugenholtz, J. Delcour, W. M. de Vos, H. Santos, and M. Kleerebezem (1999) Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance. J. Bacteriol. 181: 5521-5526.
  32. Lopez de Felipe, F., M. Kleerebezem, W. M. de Vos, and J. Hugenholtz (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180: 3804-3808.
  33. Hols, P., M. Kleerebezem, A. N. Schanck, T. Ferain, J. Hugenholtz, J. Delcour, and W. M. de Vos (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 17: 588-592. https://doi.org/10.1038/9902
  34. Bongers, R. S., M. H. Hoefnagel, and M. Kleerebezem (2005) High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl. Environ. Microb. 71: 1109-1113. https://doi.org/10.1128/AEM.71.2.1109-1113.2005
  35. Chaves, A. C., M. Fernandez, A. L. Lerayer, I. Mierau, M. Kleerebezem, and J. Hugenholtz (2002) Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microb. 68: 5656-5662. https://doi.org/10.1128/AEM.68.11.5656-5662.2002
  36. Hugenholtz, J., W. Sybesma, M. N. Groot, W. Wisselink, V. Ladero, K. Burgess, D. van Sinderen, J. C. Piard, G. Eggink, E. J. Smid, G. Savoy, F. Sesma, T. Jansen, P. Hols, and M. Kleerebezem (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie. Van Leeuwenhoek 82: 217-235. https://doi.org/10.1023/A:1020608304886
  37. Gaspar, P., A. R. Neves, A. Ramos, M. J. Gasson, C. A. Shearman, and H. Santos (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl. Environ. Microb. 70: 1466-1474. https://doi.org/10.1128/AEM.70.3.1466-1474.2004
  38. Wisselink, H. W., A. E. Mars, P. van der Meer, G. Eggink, and J. Hugenholtz (2004) Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds. Appl. Environ. Microb. 70: 4286-4292. https://doi.org/10.1128/AEM.70.7.4286-4292.2004
  39. Wisselink, H. W., A. P. Moers, A. E. Mars, M. H. Hoefnagel, W. M. de Vos, and J. Hugenholtz (2005) Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis. Appl. Environ. Microb. 71: 1507-1514. https://doi.org/10.1128/AEM.71.3.1507-1514.2005
  40. Nissen, L., G. Perez-Martinez, and M. J. Yebra (2005) Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol. Lett. 249: 177-183. https://doi.org/10.1016/j.femsle.2005.06.010
  41. Nyyssola, A. and M. Leisola (2005) Production of sugar alcohols by lactic acid bacteria. Recent Res. Devel. Biotech. Bioeng. 7: 19-39.
  42. van Casteren, W. H., P. de Waard, C. Dijkema, H. A. Schols, and A. G. Voragen (2000) Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891. Carbohydr. Res. 327: 411-422. https://doi.org/10.1016/S0008-6215(00)00065-3
  43. Boels, I. C., R. van Kranenburg, J. Hugenholtz, M. Kleerebezem, and W. M. de Vos (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int. Dairy J. 11: 723-732. https://doi.org/10.1016/S0958-6946(01)00116-9