초록
본 연구에서는 마취 중 리턴맵 분석 방법을 적용하여 ECG 신호에서 R-R 간격의 변화로 표시될 수 있는 HRV 신호를 분석하였다. HRV신호는 자율신경계(autonomic nervous system : ANS)의 상태변이에 따른 심혈관계(cardio vascular system : CVS)의 변화 양상에 대한 객관적인 정보를 구할 수 있으므로 수술중 자율신경계의 변화를 관찰하여 마취심도를 평가할 수 있다. 리턴맵 분석 방법은 일련의 시계열 HRV 신호를 위상공간으로 사상하기 위해 지연시간과 매립차원을 구한 후 2차원의 위상공간에 신호를 재구성하였다. 위상공간에 재구성된 신호 분포를 타원형으로 근사화 한 후 장축과 단축의 길이를 구하여 마취심도를 구별하는데 이용하였다. 마취 단계별 마취심도를 평가하기 위하여 마취 단계를 7단계로 구분하여 분석하였다. 외부자극이 아주 강한 마취유도단계에서 장축과 단축 모두 통계적으로 유의하게 큰값을 나타내었으며, 외부 자극이 가해지지 않은 수술중 단계에서는 장축과 단축의 길이 모두 작은 값을 나타내었다. 따라서 2차원의 위상공간에 매립된 수술중의 HRV 신호를 이용하여 자율신경계의 영향을 판단하여 마취심도를 구분 할 수 있었다.
In this paper, HRV signal which was appeared RR intervals from ECG was analyzed using return-map during anesthesia. We intended to estimate the depth of anesthesia observing the change of autonomic nervous activity(ANS) because HRV showed change of cardio-vascular system of the body according to state of ANS. Return-map analysis is to reconstruct time series of HRV to phase space after calculating delay time and embedded time. After approximating the signal distribution which was reconstructed in phase space in elliptic, we calculated the lengths of major and minor axises of the elliptic and the values was used to estimate the depth of anesthesia. Stages of the anesthesia were 7 levels to evaluate the depth of anesthesia. At induction stage of strong external stimulation, the length of major and minor axis were statistically high and at the operation stage of non-external stimulation, the values were statistically low. Conclusively, the stages of anesthesia were discriminated by HRV signal mapped in the phase space during operation.