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Minimizing Frequency Drop Cost and Interference Cost in
Reconfiguring Radio Networks

Junghee Han*

m Abstract m-

in this paper, we present a frequency reassignment problem (FRP) that arises when we install new base stations
or reconfigure radio networks to increase the capacity or to expand service area. For this problem, we develop an
integer programming (IP) model, and develop cutting planes to enhance the mathematical representation of the model.
Also, we devise an effective tabu search algorithm to obtain tight upper bounds within reasonable time bounds.
Computational results exhibit that the developed cutting planes are effective for reducing the computing time as well

as for increasing lower bounds. Also, the proposed tabu search algorithm finds a feasible solution of good quality
within reasonable time bound.
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1. Introduction

This paper deals with a radio frequency re-
assignment problem arising from the reconfigura-
tion of a radio access network (RAN). We may in-
stall new base stations (BSs) in order to expand
service area or to increase the capacity of a RAN.
Also, we may reassign frequencies to BSs due to
the change of geographical environment of a RAN,
for example, construction of large buildings, roads
and so forth. In this case, we need to minimize the
change of frequency reassignment. In particular,
dropping a frequency from a BS may force a mobile
station (MS) using this frequency to be handed
over to other frequency assigned to adjacent BSs.
If a number of MSs are handed over to a BS simmul~
taneously and the BS does not have enough empty
frequencies to accommodate them all, some MSs
may lose their connections to BSs. When we re—
configure a RAN, we also need to minimize inter—
ference among frequencies. Thus, in this paper, we
consider a frequency reassignment problem (FRP)
that minimizes the sum of interference cost and
frequency drop cost, while providing the minimum
nurnber of frequencies required for each BS. [Figure
1] illustrates the nature of the problem FRP.

Suppose that there are three BSs A, B and C,
and that a number of frequencies are assigned to
them. They are {1, 2}, {3, 4, 5} and {7, 8} for BSs
A, B and C, respectively, where numbers denote
the frequency indices. Also, we assume that the
minimum distances between frequencies to avoid
interference are 1, 1 and 2 for pairs of BSs (A, B),
(A, C) and (B, C), respectively. This is illustrated
in Part (a) of [Figure 1]. Now, we add a new BS
labeled as D requiring at least two frequencies.
And, suppose that the minimum distances between
frequencies for pairs of BSs (B, D) and (C, D) are

(a) initial assignment (b) example of no fre-
quency drop, from
left to right

(c) example of one
frequency drop

(d) example of five
frequencies drop,
from left to right

[Figure 11 llustration of frequency reassignment

2 and 1, respectively. Here, we assume that the
minimum number of frequencies for BS B changed
from three to two, and that the available frequency
set for this network is {1, -+, 8}. Then, we may
assign frequencies 1 and 3 to a new BS D without
dropping any frequency from the existing BSs. See
Part (b). However, in this case, frequency 3 appears
in both BSs B and D. Thus, MSs using this fre-
quency may experience significant interference.
While, if we assign frequencies 1 and 2 to BS D
at the expense of dropping a frequency 3 from the
BS B, we obtain an interference—free frequency as-
signment (Part (c)). Part (d) displays another in-
terference-free frequency assignment, where fre—
quencies {1, 2}, {7, 8}, {4, 5} and {1, 2} are assigned
to BSs A, B, C and D, respectively. However, in
this case, we should drop all the frequencies {3,
4 5} and {7, 8} from the BSs B and C, respectively,
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which may cause significant disorder of mohile
communication services. This implies that reassig-
ning frequencies in consideration of frequency drop
cost as well as interference cost is important to
prevent service failures that may occur during the
reconfiguration of a RAN. Numerous reports on
service failure during the frequency reassignment
process in global system for mobile communication
(GSM) based networks motivate this study ([16]
and [17]).

There exist numerous studies on generic fre-
quency assignment problem (FAP). However, only
a few researches in the literature have dealt fre-
quency reassignment problem. For example, Han
(2005} proposed a PN(Pseudo Noise)-code reassi-
gnment problem in code division multiple access
network (CDMA) that seeks to minimize the sum
of PN-code reassignment cost and interference
cost that may incur during the PN-code reassign-
ment process, where he assurnes that only one PN
code is assigned to each BS. The frequency re~
assignment problem addressed in this paper can be
conceptualized as an extension of Han (2005) by
assuming that multiple frequencies are assigned to
each BS, which is the case in GSM based networks.
Due to the relaxation on the number of frequencies
assigned to each BS, in this paper, we need to take
into account the number of frequencies dropped
from the BSs as a new cost component. Below
some distinguished research results on generic
FAPs are summarized. The first model of FAP, re-
ferred to as Min-FAP, is to minimize the total
number of frequencies needed to satisfy the mini-
mum distance requirements for all pairs of adjacent
BSs. This type of FAP was dealt by Hale (1980),
Gamst and Rave (1982), Hao et al. (1990) and Sung
and Wong (1997). Hale (1980) showed that this
problem can be expressed as a graph coloring

problem. Ancther type of FAP, referred to as
Max-FAP, is to maximize the total number of fre-
quencies assigned to the BSs, while satisfying the
minimum distance requirements among frequen-
cies for all pairs of adjacent BSs. Gamst and Rave
(1982), Marthar and Mattfeldt (1993), Chang and
Kim (1997), Sung and Wong (1997) and Tiourine
et al. (2000) dealt with the Max-FAP. Hao et al.
{1990) also developed a tabu search algorithm to
solve a FAP that minimizes the total interference
among frequencies, referred to as MI(Minimum
Interference)-FAP. For the MI-FAP, Tiourine et
al. (2000) developed a heuristic algorithm and com~
pared the performance with tabu search algorithm
developed by Hao et al. (1990). Also, Tiourine et
al. (2000) obtained a tight lower bound by re-
formulation, and found an optimal solution using
the branch-and-bound combined with some pre-
processing routines. Besides, quite many research
papers on FAP are well summarized in the work
by Aardal et al. (2001).

The remajnder‘of this paper is organized as
follows. In Section 2, we develop a IP formulation.
In Section 3, we develop some cutting planes in
order to obtain tight lower bounds. In Section 4,
we devise an effective tabu search algorithm to find
good quality feasible solutions within reasonable
time bound. Computational results are provided in
Section 5, and Section 6 concludes this paper.

2. Formulation

Let N be the set of BSs, and let F be the set
of frequencies. Also let F(i) & F be the set of fre-
quencies that are currently assigned to BS 1 € N,
and let b{i) be the number of frequencies required
aaBSie NDefine E={,j G e N:ri)
> 0}, where r{i, j) denotes the minimum distance
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between two frequencies assigned to BSs 7 and j
{> 1) € N, respectively, to avoid interference. Let
xy=11f frequency f € Fis assigned to BS | €
N and 0 otherwise, and let yix = 1 if the number
of frequencies dropped from F() is equal to k (=
1, IF(]) and 0 otherwise. Setting yx = 1 entails
frequency drop cost px (> 0). Note that we need
not consider frequency drop cost for a new BS.
Also, let uge = lif xy=x=1for G, j) € E, f
and g € Fsuwhthat [f - gl <r(i, /) and O otherwise.
I wye = 1, interference cost gyy-¢ arises between
frequencies f and g € F that are assigned to BSs
iandj (> 1) € N, respectively. We set both inter—
ference cost and frequency drop cost based on
some proper assumptions. We assume that inter—
ference cost grg increases as |f~gl decreases.
Also, we assume that it is realistic to set interfer-
ence cost greater than frequency drop cost since
interference influences on service quality perma-
nently unless the current frequency assignment is
not re-optimized, while the service quality degrade
resulting from the frequency drop is temporal.
Obviously, frequency drop cost should increase as
the number of frequencies dropped from a BS in-
creases. Then, we should find an optimal trade—off
between interference cost and frequency drop cost.
Also, if a number of frequencies should be dropped
(changed), we need to determine whether to con-
duct major change of frequency assignment for a
few BSs or to conduct minor change of frequency
assignment for a wide range of BSs. Using the no-
tations defined above, we can formulate the FRP
as a linear IP model as follows.

FRP :
Min i e N2k < IRt PikVik

+ 26 ) e EXfge Filrgd < ri ) il Yiite
Subject to

Syer xy = bli) i € N, 1
Yre mo Xtk < 1p0l k v = |FO)

i €N, )]

2k < 1Fol Yie < 1 i € N, 3
Xp+ Xg < 1+ ug i, )) € E,

fg e F:lf-da<rGp (4

all the variables are binary, ‘ 16Y]

where N' = {i € N:|F(®| > 1}.

Constraint (1) forces that at least b(i) frequencies
should be assigned to BS i € N. Constraints (2)
and (3) express the number of frequencies dropped
from the set of original frequencies assigned to
each BS. Constraint (4) expresses the interference
between two frequencies assigned to adjacent BSs.

If IFG)| = b() for all i € N and the current
frequency assignmment is interference free, we need
not change any frequency. Thus, we assume that
FG) < bl) for some § € N or that there exists inter~
ference among the current frequency assignments
to BSs. In the following section, we develop some
cutting planes that improve the lower bound of for-
mulation FRP.

3. Cutting Planes

Remark 1 : Note that any optimal solution sat~
isfies that

2y e rxy < max{IFG), bW} i € N.  (6)

Thus, if |F()} < b)) for some i € N, we see
that any optimal solution satisfies the constraint
(1) at equality. 0

Proposition 1 : Suppose that |F()| > b{i) for some
i € N. Then, any optimal solution
satisfies that
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2s e F X = [FI-Zier, - 1roi-s0 k yi
~2k - 1p UFDFBE) vi arorseo- (D

Prodf : Let (x", ¥) be an optimal solution. If T
< # Vi = 0, equality (7) becomes 3 « r X'y =
[F(DL. In this case, we need not add any frequency
in AF(i) to BS { € N since |F(@)| > b(i). Note
that addition of any frequency in AAF() to the BS
i does not decrease the total cost. 2% - 1. 1m0
w0 Vi = 1, equality (7) becomes 3y e £ Xy = |F(G)]
- k°, where k° = arglk = 1+, |F()| - (i) : y'
= 1}, which is greater than or equal to b(}). Thus,
we need not add any frequency in AF() to the BS
i. Finally, if 2% - 1, s0 Yoo + o = 1, equality
(7) becomes Xy < r x'y = b(i). Even in this case,
we need not force that 2 « 7 X'y > b(i) by adding
additional frequencies to the BS i. This completes
the proof. [

Now, we consider a valid inequality based on a
clique subgraph of G(N, E). For a clique inducing
node set C < N, Padberg (1973) considered the
following inequality

Siecxw <1l LjODecC:
ROl < i, ), &

where fii) denotes the frequency assigned to
node i € C, and inequality of type (8) was used
by Fischetti et al. (2000) for solving the MaxFAP
in a branch-and-cut framework. However, due to
the u variables representing the interference level
between two frequencies, we modify nequality (8)
to deal with u variables. O

Proposition 2 : Consider a triple of nodes {i, j, j/}
CSNIY-g<rGnIf- g
<ri, /) and g - g1 <r(, /) for

f gand g € F, any optimal sol-
ution satisfies that

XiftXigtXig < LUt Uijre Uy g )

Proof : Let (", &) be an optimal solution. If x"y =
X = Xjg = 1, we see that Uy = Uy = Ujey
= 1 from the constraint (4), which satisfies the in-
equality (9). Now, we assume that, for example,
Xy =xjz=1and x7y = 0. Then, we see that 'y
= 1 from the constraint (9) and that ¢y = 10
= ( from the direction of the objective function,
which also satisfies the ineguality (9). If v’y =
1 (or Wy = 1) when xs = Xjg = 1 and X'y = 0,
this solution cannot be optimal since 1/ = 1. Thus,
in this case, we see that Uy = Ug = 0 if X'y
= X'y = 1 and X';y = 0, which also satisfies the in-
equality (9). This completes the proof. O

Suppose that we have an optimal solution to the
LP-relaxation of FRP such that xy = x5 = x50 =
0.5. In this case, constraint {4) is satisfied by uz
= Uy = UWige = 0, while nequality (9) becomes 0.5
< Ut Uit Ujjge Here, we see that wye = 0.5
and Uy = Ujge = 0 If Girg < minlgyyg, Gigg1)-
Although we can define inequality (9) over a clique
inducing node set rather than just a triangle, we
do not consider a clique inducing ﬁode set C
N with |0 = 4 to separate the inequality of type
{9) since the inequality (9) is not rarely viola-
ted by the fractional optimal solution of FRP if (]
> 4

4. Tabu Search

Motivated by the successful application of tabu
search to MI-FAP (Tiourine et al., 2000) that is
closely related with the problem FRP, we develop
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an effective tabu search algorithm tailored to the
problem FRP considering both frequency drop cost
and interference cost. The proposed tabu search al-
gorithm has some characteristics compared with
that developed for MI-FAP (Tiourine et al., 2000).
First, we allow solution infeasibility temporarily in
terms of constraint (1), which turned out to be ef-
fective when dealing with frequency drop cost.
Second, we employ a list. consisting of elite sol-
utions, from which we select one and resume the
search process. Also, we allow the implementation
of tabu moves probabilistically. To describe the
proposed tabu search algorithm precisely, we de—
fine some notations.

Let us denote the current solution by (°, y°, u°).
We define F°(i) = {f € F:x°% = 1} as a set of
frequencies currently assigned to BS i € N. Also,
we define {F°({) : Vi € N} and Z° as the current
solution and its objective value, respectively.

4.1 Initial Procedure

Initialize : Let F°()) = F() for all i € N.

Step 1 : Pick an arbitrary BS { € N such that F°()
< b(7), and add a frequency f € F\F°(i)
with minimum interference cost to F°(i).
If F°(i) = b(i) for all { € N, go to Step
2. Otherwise, repeat this step.

Step 2 : Find a minimum DI, 1, where DIi, fl de-
notes the change of total cost by dropping
frequency f € F°(i) from BS i € N, for
BSs i € N such that F°(i) > b(;), and
go to Step 3.

Step 3 : K D[i, A1 <0, delete frequency f from F°(),
and go to Step2. Otherwise, stop.

Next, we describe moves and tabu list. Also, we
consider elite solution list (ESL) that would effec-
tively guide moves to an unexplored search space.

=
o

o

4.2 Moves

We consider two types of move, improving move
and random move. We define improving move to
change the frequency f € F°(i) to a new frequency
g € FF°() for some i € N such that the resulting
solution reduces the total cost by at least MinDelta
(%), where such a triple <i, f, &> is chosen at
random. Also, we define random move that chan—
ges a frequency f € F°(i) to a new frequency g
€ F\F°(i) for some i € N. If the resulting solution
by a random move increases the total cost of the
previous solution by more than MaxDelta (%), we

" restore to the previous solution. Note that two

moves defined above are very simple. However, we
attempt to find good quality feasible solutions by
calibrating parameters adaptively under the guide
of tabu list and by employing restarting mechanism
that seeks to find a high quality solution from an
elite solution at different configuration of neigh—
borhood.

4.3 Tabu List

We consider a tabu list consisting of recently
executed MaxTL moves. That is, tabu list is aug—
mented at every implementation of improving and
random moves. However, we examine tabu list on-
ly when we evaluate random moves. An interesting -
strategy for evaluating random moves with refer—
ence to tabu list is that we prohibit a random move
in the tabu list probabilistically from execution.
That is, even if a random move matches with an
element in the tabu list, we allow the execution of
this random move if the value generated from a
uniform distribution in the range {0, 1] is less than
ProbTL. The reason we employ probabilistic tabu
list is that we need not prohibit all the moves in
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the tabu list to escape from the loop of local optima.,
For example, suppose that we have just performed
a series of moves @ 2 b — ¢ —d (—a). In most
cases, we can escape from this loop of moves by
prohibiting some of these moves. If we prohibit on-
ly two moves, for example, b and d, which means
that the random values associated with theses two
moves are greater than ProbTL, we may find a
new direction of moves by allowing a tabu move
a temporarily, for example, @ — e, from which we
may reach unexplored search space.

4.4 Elite Solution List

In our tabu search algorithm, we employ an elite
solution list (ESL) consisting of up to MaxESL
best solutions. More than one solution in ESL can
have the same objective value if they are different
each other in tenms of {F°()) - Vi € N}. The ESL

is updated at every execution of improving move.

That is, if the current solution is better than the
worst solution in ESL and if the cardinality of ESL
equals MaxESL, we replace the worst solution in
ESL with the current solution. The management
strategy of ESL enables us to improve the average
quality of feasible solutions in ESL as the comput-
ing time allowed for our heuristic algorithm incre~
ases.

4.5 Overall Procedure

Define {F'()) : Vi € N} and Z" as the best sol-
ution and its objective value, respectively, among
the solutions in ESL. Below, we describe overall
procedure for improving the current solution.

Step 0 (Initialize) : Obtain a feasible solution {¥°
(i) Vi € N} and its objective value Z°
by performing the InitialProcedure. Set

MinDelta = 5% and ESL = {{F°() 1 Vi €
NY). And, let IterCnt = 0.
Step 1 : Perform improving moves with MinDelta
until Z° is not reduced, and go to Step 2.
Step 2 : Set MinDelta = MinDelta x 0.8, If Min
Delta x 7° is less than the minimum unit
cost (for example, 1), go to Step 3, else,
go to Step 1.
Step 3. - If Z° is updated in Steps 1 and 2, set Iter
Cnt =0, else, set IterCnt = IterCnt+1. If
IterCnt = MaxdterCnt, go to Step 6, else,
calculate Z°g denoting the interference cost
of the current solution and go to Step 4.
Step 4 : Pick an arbitrary pair of BS 1 € N and
frequency f € F°(i) incurring interfer-
ence, and delete the frequency f from
F°(i). Repeat this frequency deletion until
the total interference cost of the resulting
(infeasible) solution is less than or equal
to Z°g*xMinlnter (%), and go to Step 5.
Step 5 : For an arbitrary BS i € N such that
|[F°() < bl), add at least b()-|F°()| fre-
quencies considering both cost factors p
and ¢ (by optimally solving the problem
Add{)) defined below), and update F°(i).
Repeat this frequency addition until the
feasibility of the solution is satisfied
(PG| = b() for all i € N). Update ESL
with this solution. Set MinDelta = 5%,
and go to Step 1.

Add{() : Minimize 2k < (po Dik Vi
T2 ENG D o G DEN g FY)

2ie Fird < D Qird X
Subject to (1)~(3) and (5).

Step 6 : If time limit expired, stop, else, pick an
arbitrary solution from ESL. Denote this
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solution and its objective value by {F°(
1)1 Vi € N} and Z°, respectively, and
perform random moves for MaxRM
times. Set MinDelta = 2% and IterCnt =
0, and go to Stepl.

Note that random moves are executed only in
Step 6 for a solution randomly selected from ESL.
Although we could perform improving move —
random move — improving move to diversify the
neighborhood of the current solution, preliminary
test exhibits that this type of procedure is not ef-
fective for improving the solution. Instead, by per—
forming feasibility recovering procedure (Step 5)
after partially destroying the feasibility (Step 4)
between successive improving move procedures
{Step 1), we could effectively enhance the solution.
Also, note that we resort to restarting scheme
{Step 6) only when we cannot improve the current
solution for a mumber of move iterations. That is,
we perform random moves for a solution in the
ESL to guide the improving move (Step 1) to a
new direction.

4.6 Parameter Tuning

There are eight parameters : MinDelta for im-
proving move, MaxDelta and MaxRM for random
move, Mininter for frequency deletion, Max7L and
ProbTL for tabu list and MaxESL for ESL,
MaxlterCnt for feasibility destroy and recover
procedure. They are tuned as follows.

* MinDelta : Note that MinDelta is determined
adaptively as described in Steps 1 and 2 of the
Improving Procedure : If MinDelta is set to
a large value (for example, 10%) initially, we
may waste computing time without improving
the current solution until MinDelta is adjusted

to a smaller value. On the other hand, if we set
initial MinDelta to a very small value (for ex-
ample, 0.1%6), we may consume Jong computing
time for improving moves with marginal
improvement. We found that setting MinDelta
= 5% at Step 0 and to 296 at Step7, respectively,
can be a reasonable compromise in terms of
computing time and solution quality obtained by
improving moves. The reason we set MinDelta
= 2% at Step 6 (smaller value than that being
set at Step 0) is due to the observation that any
solution in ESL is rarely improved by the same
amount with the improvement obtained by a
single improving move when starting from the
initial solution.

o MaxDelta and MaxRM : The reason we per-
form random moves is to diversify the solution.
However, we need to prevent the current sol-
ution from becoming too aggravated. In this
context, we have set MaxDelta = 1% and Max
RM = 5 times. Setting MaxDelta and MaxRM
to large values is not recommended since, in that
case, we observed that the solution quality
highly fluctuates and Z* is slowly updated.

e Mininter : We have set MinInter = 50% since
we have generated test problems such that there
is no initial interference among F(i)’s for i €
N and that average value of b(i)'s is slightly in-
creased compared with that of |F()i's. However,
note that as we decrease Minlnter the range of
solution quality of the recovered solution in-
creases. Thus, we should be careful when set-
ting Mininter, in particular, if we deal with a
network having large demands of b(i).

® MaxTL and ProbTL : The size of MaxTL af-
fects the memory consumption, solution quality
and computing time. However, we focused pri-
marily on the solution quality and computing
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time. In this paper, we have set MaxTL = |N|
% |Fl. And, we have set ProbTI = 05, That is,
the probabhility we perform a random move be-
longing to the tabu list is 50%.

® MaxESL * If MaxESL is set to a large value or
to a very small value, Z" is slowly updated. In
consideration of computing time and solution
quality, we have set MaxESL = L INI/2 ] .

* MaxIterCnt  We set MaxIterCnt = 2. There is
no significant difference in terms of solution
quality for a given time limit whether we set
MaxIterCnt to a large value or not.

5. Computational Results

In this section, we report computational results
of the proposed solution procedure. Test problems
are generated as follows.

Step 1! (Generate a network). Generate |V BSs

on a square with dimension 1000 by 1000

at random, and calculate the distance D,

7) for all pairs of BSsiandj (> i) € N.

If DG, jy > Rx1000, set r(i, /) = 0 and oth-

erwise, set (1, /) = [ 3x(400-D(, /))/400

] foralliandj (& i) € N, where B (<

1} is the minimum value that guarantees

the connectivity of the resulting network.

The R can be found by trial-and-error.

Step 2 : (Generate F(i)). Pick a BS at random, and

assign the lowest index frequency in F

not incurring any interference with other

frequencies assigned to adjacent BSs.

Repeat the above procedure until further

assignment of frequency to any BS is not

possible. Let F(i) denote the set of fre-
quencies assigned to BS i € N,

Step 3 @ (Set b(i)). Set b(i) = |F()I/2x(1+Uniform

[0, 1D if |FG)) > 09xAvgF, where AvgF
is the average of [F()l over { € N. Other-
wise, set b(i) = |F)|+AvgFxUniform
[0, 11.
Step 4 : (Set cost factors). Set py = [ IFAF!]

and pyrey = |F] for all i € N. And, set
pic = puHparorp)/log((FD)xk T for k
=2 < [FD|-1 and i € N. Also, set gy
g = 10450xr(i, /)/(f-g1+1) ] for all (i, j)
€ E fand g € F.

The coding was done in C and all runs were
made on a Pentium IV 32 GHz PC, 2GB RAM with
CPLEX version 100 as a LP/MIP solver, We report
computational results of 6 test problems in <Table
1>~<Table 3>. The following notations are used
in <Table 1>~<Table 3>.
¢ P model FRP,

s Pe . model FRP enhanced by optimality cuts (7)
and (9) and with inequality constraint (1) re-

placed by equality constraint (see Remark 1),

For all test problems displayed in <Table 1>~
<Table 3>, we have interrupted the CPLEX opti~
mization procedure in 7,200 CPU seconds. Also, we
have run the tabu search algorithm for only 300
secands. The “Ratio” of the proposed tabu search
solution is calculated as follows.

Ratio = 100%x(Tabu upper bound-Min{Upper
bound P, Upper bound Pe})/Min{Upper bound P,
Upper bound Pe}).

From <Table 1>, we see that the LP-relaxation
lower bound of Pe is far better than that of P. Also,
we find better than (or equally good) and worse
solutions using the enhanced model Pe for six and
thirteen problems, respectively, out of twenty,
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{Table 1> Computational results : N = 20, F = 20

No LP relaxation lower bound Upper bound Ratio Elapsed time (seconds)
P Pe Best P Pe Tabu %6) P Pe Tabu
1 829 1170 125 | 1215 | 1215 1230 123 | 2740 18 300
2 674 1222 1547 | 1600 | 1565 158 128 | 7200 7200 300
3 1099 1357 470 | 1470 | 147 1470 0 1601 32 300
4 774 1256 1480 | 1520 | 1480 1490 068 | 7200 3000 300
5 680 1039 130 | 1415 | 1350 1370 148 | 7200 7200 300
6 1495 1793 180 | 18400 | 1840 1840 0 164 4 300
7 544 79 90 920 920 9% 163 | 62 1006 300
8 673 1029 2o | u2 | u2 1% 045 | 524 | o247 300
9 655 984 10835 | 1035 | 1035 1040 048 | 7200 4 300
10| 25 451 566 555 555 570 27 % 888 300
1 | 143t 1821 18% | 18% | 18% | 18% 0 6314 119 300
2 | &5 1165 1355 | 135 | 135 1370 111 | 6101 454 300
13| 99 1427 160 | 1670 | 1650 1655 03 | 7200 7200 300
14 | 500 762 1020 | 105 | 105 1060 244 | 720 7200 300
15 | 9M 1415 1631 | 180 | 1760 1810 284 | 200 7200 300
16 | 763 1024 1100 | 1100 | 1100 1100 0 45 54 300
17 | 5% 816 %5 %5 9565 %5 106 | 1337 339 300
18 | 60 960 1220 | 1495 | 156 1510 10 | 7200 7200 300
19 | 1210 1497 1560 | 1860 | 1560 1565 032 17 1 300
0 | 64 1097 1210 | 1256 | 1210 1210 0 7200 7200 300

when compared with the solutions based on the
original model P. This implies that applying the op~
timality cuts (7) and (9) along with replacing the
iriequality constraint (1) by equality constraint can
be a viable approach to find a better feasible sol~
ution within limited computing time. Note that the
computing time elapsed to find an optimal solution
is significantly reduced for eleven problems by ap-
plying the optimality cuts (7) and (9) although
there are some exceptions, i.e,, problems #7 and #19.
Also, the proposed tabu search algorithm finds
good quality feasible solutions consuming smaller
computing times. Note that the tabu search solution
is better than or equal to the best CPLEX solution
for five test problems out of twenty (Ratio < 0),

and the worst Ratio does not exceed 2.84%.
We conduct additional experiments for larger
test problems. They are displayed in <Table 2>
and <Table 3>. Similar to the results of <Table
1>, we see that the LP-relaxation lower bounds
of Pe are also quite tight. And, we find better or
equally good solutions using the enhanced model
Pe for all test problems in <Table 2> and for sev-
enteen test problems out of twenty in <Table 3>,
when compared with the solutions based on the
original model P. Also, the proposed tabg search
algorithm outperforms the CPLEX optimization
procedure based on the models P and Pe in terms
of upper bound and computing time. Note that the
proposed tabu search algorithm finds better or
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(Table 2> Computational results : N = 30, F = 20

No LP relaxation lower bound Upper bound Ratio Elapsed time {(seconds)
P Pe Best P Pe Tabu P Pe Tabu
21 942 1498 1695 1745 1695 1710 0.88 7200 6333 300
22 1187 194 2160 2310 2160 2160 0 7200 7200 300
23 928 1339 1684 1920 1865 1815 268 | 7200 7200 300
24 752 1009 1190 11% 1190 1190 0 7200 7200 300
25 993 1416 1726 1910 1860 1850 054 7200 7200 300
26 803 1378 1670 2090 1890 180 212 7200 7200 300
27 1067 1647 1820 18% 1850 1830 108 7200 7200 300
2 1088 1676 1765 175 1765 1780 0.8 7200 179 300
29 546 &0 usks 1165 1145 1190 393 7200 7200 300
30 1307 1805 1975 2000 1975 - 2035 304 7200 7200 300
31 1421 2195 2870 2960 2890 2910 0.69 7200 7200 300
32 623 837 1006 1006 1006 1015 1.0 5905 365 300
33 640 1015 1120 1z 120 136 134 7200 492 300
34 748 1129 1220 1335 1335 1270 487 7200 7200 300
35 989 134 1510 1635 1530 1530 g 7200 7200 300
36 936 1378 1470 1575 1505 1485 1.3 7200 7200 300
37 1577 2165 2290 2355 2290 2206 0.22 7200 63 300
3 an 1337 1880 1960 1905 1835 105 | 7200 7200 300
3 1019 1590 1810 1870 1840 1810 163 | 7200 7200 300
40 927 1448 1590 1605 1590 1590 0 7200 3766 300

equivalently good feasible solutions for twelve test
problems out of twenty in <Table 2>, and for all
test problems in <Table 3>, when compared with
those of P and Pe, The maximum Ratio does not
exceed 393% for test problem in <Table 2>, While
note that Ratio ranges from -9.54% up to -60.5%
for the largest test problems considered in this pa-
per as displayed in <Table 3>.

From <Tgble 1>~<Table 3>, we see that
{a) the model Pe enhanced by optimality cuts (7)
and (9) and by the equality constraint (6) out-
performs the original model P in terms of sol-
ution quality,
{b) the proposed tabu search algorithm performs

similar to the model Pe in terms of solution
quality for small size problems, while consum-
ing far smaller computing times,

{c) the proposed tabu search algorithm finds far
better feasible solutions for larger test prob-
lems, when compared with the enhanced model
Pe, reducing the total cost at least 9.54% up
to 60.5%.

Now, we focus on the behavior of the tabu search
algorithm for some combinations of parameters.
Although there are 8 parameters affecting the per-
formance of the tabu search algorithm, we inves-
tigate the influence on the performance of the tabu
search algorithm for only four parameters, Minin
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(Table 3> Computational results : N = 50, F = 30

No LP relaxation lower bound Upper bound Ratio Elapsed time (seconds)
P Pe Best P Pe Tabu P Pe Tabu
411 24 580 590 6429 7011 2634 59.1 7200 7200 300
42 26 548 5653 4190 3480 2832 186 | 7200 7200 300
43 404 1087 1141 3090 3090 2194 29 | 7200 7200 300
4 669 1692 17 5536 4079 2204 4H9 | 7200 7200 300
45 363 8% 38 3223 2716 1924 2.1 7200 7200 300
46 1A 386 391 2905 2905 2042 297 7200 7200 300
47 20 610 616 5611 5463 2743 498 | 7200 7200 300
48 287 682 764 4166 4034 2364 414 | 7200 7200 300
49 349 8H 942 3127 3004 1937 b5 | 7200 7200 300
50 A7 859 928 5314 4182 1829 563 | 7200 7200 300
51 355 910 1003 244 2302 1956 151 7200 7200 300
52 306 759 802 3433 3321 2012 394 7200 7200 300
53 260 549 5652 5887 58% 2956 492 | 7200 7200 300
54 263 53 559 6450 6450 2743 574 | 7200 7200 300
5 178 372 382 5078 5023 2258 5.1 7200 7200 300
5% 416 929 99%6 4242 3145 2845 954 7200 7200 300
57 510 1568 1607 8037 3028 1933 6.2 7200 7200 300
58 26 546 54 5522 5590 2351 574 | 7200 7200 300
59 244 54 506 4708 4700 1857 605 | 7200 7200 300
60 342 816 842 2868 2802 2201 232 7200 7200 300

ter, MaxTL, ProbTL and MaxESL, since the per—
formance of the tabu search algorithm is not sensi-
tive to the other 4 parameters, or they are de-
termined adaptively. In [Figure 2] ~[Figure 5], we
compare the tabu search solutions obtained by run—
ning 300 seconds for varying parameters of Min
Inter, MaxTL, ProbTL and MaxESL, respectively,
where x-axis represents the parameter, and y-axis
represents the percentage ratio of the solution as-
sociated with the parameter value to the best tabu
search solution. Since we consider test problems
of three different classes in size as displayed in
<Table 1>~<Table 3>, we present average per-
centage ratio for each problem size.

Note that average percentage ratio against vary-—

ing Mininter exhibits similar pattern for all prob-
lem size as displayed in [Figure 2]. Although the

" average percentage ratio is minimum when Min
Inter = 40% for N = 20 and F = 20, the overall
performance is best when Minlnter is around 50%.
Also, in [Figure 3], note that the overall perform-
ance of average performance is best when MaxTL
= |NIx|F, although there is an exception when N
=30 and F = 20. In [Figure 4], we see that ProbTL
= (05 seems the best parameter, although the aver-
age percentage ratio is best for other value ProbTL
= 0.7 for problem size of N = 50 and F = 30. While,
in [Figure 5], we see that MaxESL = L INI/2] al-
ways outperforms other values of MaxESL re-
gardless of problem size.
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[Figure 2] Percentage ratio of the solution to the
best solution for Mininter = {20%, 30%,
40%, 50%, 60%), where MaxTL =
INIXIFI, ProbTL = 05 and MaxESL =
LINI2 )
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[Figure 4] Percentage ratio of the solution to the

best solution for ProbTL = {0.1, 0.3, 0.5,

0.7. 0.9}, where Mininter = 50%, MaxTL
= {Mx|Fl and MaxESL = LINI/2]

6. Conclusions

In this paper, we considered a frequency re-
assignment problem arising from the reconfigura-
tion of radio networks. For this problem, we devel—-
oped an IP model. Also, we developed two opti~
mality cuts in order to derive tight lower bounds.
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[Figure 3] Percentage ratio of the solution to the

best solution for MaxTL = |MxIFAx {0.1,
05, 1, 2,10}, where Mininter = 50%,
ProbTL = 05 and MaxESL = LINI/2 |
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[Figure 5] Percentage ratio of the solution to the

best solution for MaxESL = LINI/2 ] x
{0.1, 0.5, 1, 5, 10}, where Mininter =
50%., MaxTL = IMxIFl and ProbTL =
0.5.

For solving large problem instances, we developed
an effective tabu search algorithm. Computational
results show that the developed cutting planes im-
prove the lower bound significantly and are effec-
tive for reducing the computing time to find an op—
timal solution. Also, we observed that the proposed
tabu search algorithm finds better or equally good
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feasible solutions using far less computing time
when compared with the CPLEX optimization pro-
cedure.
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