복합적층 및 샌드위치판 전단변형함수에 관한 상호비교연구

Comparison of Various Shear Deformation Functions for Laminated Composite/Sandwich Plates

  • 박원태 (공주대학교 건설환경공학부) ;
  • 장석윤 (서울시립대학교 토목공학과 / (주)이산) ;
  • 천경식 ((주)바우컨설탄트)
  • 투고 : 2010.07.31
  • 심사 : 2010.08.29
  • 발행 : 2010.09.30

초록

본 연구에서는 Lagrangian 및 Hermite 보간함수를 혼합정식화한 유한요소법과 다양한 전단변형함수로 등방성, 대칭 적층 및 샌드위치판 모델을 제시하였다. 제시된 전단변형이론은 판의 상하면에서 전단응력이 0이 되는 다항식, 삼각함수, 쌍곡삼각함수 및 지수함수로 구성되어 있다. 모든 전단변형함수는 해석해, 정해 및 기발표된 유한요소 결과치와 비교하였으며, 합리적인 정확도를 갖는 것으로 예측되었다. 특히, 지수형태의 전단변형함수(Karama et al. 2003; Aydogu 2009)가 적층 및 샌드위치판 해석에 있어서 상대적으로 가장 우수한 결과를 보였다.

In this paper, we used various shear deformation functions for modelling isotropic, symmetric composite and sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, are predicted the reasonable accuracy for investigated problems. Particularly, The present results show that the use of exponential shear deformation theory (Karama et al. 2003; Aydogu 2009) provides very good solutions for composite and sandwich plates.

키워드

참고문헌

  1. 박원태, 손병직, 천경식 (2004) 단순지지된 비등방성 경사판의 고차전단변형에 의한 정적거동 비교분석, 대한토목학회 논문집, 제24권 6A호, pp.1173-1182.
  2. 천경식, 홍대기, 장석윤 (2003) 삼각함수를 이용한 복합적층보의 지그재그 모델, 대한토목학회 논문집, 제23권 3-A호, pp.421-428.
  3. 천경식, 최회권, 장석윤 (2003) 다양한 Serendipity 유한요소에 따른 복합적층판의 정적, 좌굴 및 자유진 동해석 비교연구, 대한토목학회 논문집, 제23권 5A 호, pp.901-909.
  4. Aydogdu M (2009) A new shear deformation theory for laminated composite plates, Compos Struct, Vol.89(1), pp.94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
  5. Idlbi A, Karama M and Touratier M (1997) Comparison of various laminated plates theories, Compos Struct, V ol.37, pp.173-184. https://doi.org/10.1016/S0263-8223(97)80010-4
  6. Kant T and Swaminathan K (2002) Analytical solutions for the static analysis of laminated composite and sand wich plates based on a higher order refined theory, Compos Struct, Vol.56, pp.329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
  7. Karama M, Afaq KS and Mistou S (2003) Mechanical behaviour of laminated composite beam by new multi-l ayered laminated composite structures model with trans verse shear stress continuity, Int J Solids Struct, Vol.40, pp.1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  8. Levinson M (1980) An accurate simple theory of statics and dynamics of elastic plates, Mech Res Commun, Vol.7, pp.343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  9. Mindlin RD (1951) Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, J Appl Mech, Vol.18, pp.31-38.
  10. Murthy MVV (1981) An improved transverse shear d eformation theory for laminated anisotropic plates, NASA Technical Paper.
  11. Pagano NJ (1970) Exact solutions for rectangular bidi rectional composites and sandwich plates, J Compos Mater, Vol.4(1), pp.20-34. https://doi.org/10.1177/002199837000400102
  12. Pandya BN and Kant T (1988) Higher-order shear de formable theories for flexure of sandwich plates-finite element evaluations, Int J Solids Struct, Vol.24, pp.419-451.
  13. Reddy JN (1984) A simple higher-order theory for la minated composite plates, J Appl Mech, Vol.51, pp.74 5-752. https://doi.org/10.1115/1.3167719
  14. Reissner E (1945) Reflection on the theory of elastic plates, J Appl Mech, Vol.38, pp.1453-1464.
  15. Srinivas S (1973) A refined analysis of composite la minates, J Sound Vib, Vol.30, pp.495-507. https://doi.org/10.1016/S0022-460X(73)80170-1
  16. Soldatos KP (1992) A transverse shear deformation th eory for homogeneous monoclinic plates, Acta Mech Vol.94, pp.195-200. https://doi.org/10.1007/BF01176650
  17. Touratier M (1991) An efficient standard plate theory, Int J Eng Sci, Vol.29(8), pp.901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  18. Whitney JM and Pagano NJ. (1970) Shear deformation in heterogeneous anisotropic plates, J Appl Mech, Vol.37(4), pp.1031-1036. https://doi.org/10.1115/1.3408654