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Practical Design Issues in a Linear Feedback Control System with a Notch Filter

g .79 a
(Lihua Jin * Young Chol Kim)

Abstract - This paper presents some practical design issues that should be carefully considered when a notch filter is
included in a linear feedback controller. A notch filter is generally used to compensate the effects of resonant modes that
may result in poor performance. It is very common that the practical engineers prefer to add such a notch filter after
having previously designed a feedback controller without the filter. It is known that the resulting performance by this
approach is not seriously different from when a feedback controller is designed for a plant previously compensated by a
notch filter. However, we will point out that there are some cases where both approaches have different performances. In
order to show this, a low-order controller design using the partial model matching method has been applied to a linear
time invariant (LTI) model. The results suggest that there is a tendency to achieve much better time responses in terms
of reducing the overshoot and shortening the settling time, and in the frequency domain characteristics such as the
sensitivity function and the stability margins when the design of a feedback controller after including a notch filter is
carried out.
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Classical circuit components are often used in the

design of  feedback  control systems. Lead/lag
compensators and notch filters constitute two such
examples, with notch filters being used to reduce the
excitation of resonant modes. When the plant includes
lightly damped poles, the use of notch filters has been
found to improve loop shaping [1], [2].

There are essentially five different configurations of a
feedback system depending on where a notch filter is
placed in a two-degree of freedom (DOF) controller
structure [3-5]. Even though all the configurations share
a common open-loop transfer function, due mainly to the
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configurations, we will show that the one illustrated in
Fig. 1(a) has the best time domain performance.
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The control engineers in the industry often prefer to
add a notch filter after having designed a feedback
controller for the original plant. The expectation is that
the loop transfer function obtained should be similar to
the one obtained when a feedback controller is designed
for a plant that has been compensated with a notch filter
beforehand.

In this paper, we will investigate what differences, if
any, there are between these two approaches. To this
end, the partial model matching method [6] is employed
to design a low-order controller. For a given fixed-order
controller structure as shown in Fig. 1(a), we first select
a target closed-loop transfer function that meets the
desired specifications. Then the controller parameters are
computed so that the resulting closed-loop transfer
function approximates the target transfer function as
closely as possible. This is what "partial model matching
method” means in this paper. Two examples are given to
compare the time and frequency domain characteristics of
both approaches.

2. THE FEEDBACK CONTROL SYSTEM WITH A
NOTCH FILTER

The configurations of feedback control system that use
different controller structures and notch filter positions
are illustrated as Fig. 1(a)-(e). The open- and
closed-loop transfer functions of the feedback systems
are derived and their time and frequency responses are
compared later in this section.

The plant model is given by
N, (s) N (s)

@)= 5 ‘m‘ W

where D,(s) denotes the weakly damped poles and Rl(s) is the
remainder of D, (s).
The notch filter can be described by
N.{s) 52 +2Cwns+wi

Fls)= == "
(s) D, (s) & +2(w,s -Hui ’ @

where w,, ¢, ( are the undamped natural frequency,

actual and desired damping ratio of resonance,
respectively.

The low-order feedback controller to be designed is

B(s)

If we let
D,(s)=N,(s), )
the loop transfer function and sensitivity function
corresponding to Fig. 1 are given by
soy— MO B N )5 -

D (S)Df(S)A(S) R(S)Df<S)A(S) ’
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Consequently, the resonant term Ep(s) is  exactly
cancelled by ; (s) in the open-loop system.
The closed-loop transfer functions of Fig. 1 from r to

y are as follows:
(i) Fig. 1(a):

)= Ka(s)]\/;(s) o
L) = oD, A + V5 Hs)

) RGBT + N, W BTN, ) ”
(iii) Fig. 1(c)h

(s)= K a)0 () ©
) = TRGD, T AG) + N, () B V. (5)
(iv) Fig. 1(d):
7,(5) = H,(s)N, (s)B(s) 10

H(s)N (s)B(S)Df (s)

p

[R(s)DfEs)A(s)+J\§,(s)B(s)]Nf(s) '

(11)

It should be noted that all the closed-loop transfer
functions are different from each other, whereas the
open—loop transfer functions and the sensitivity functions
are not dependant on the system configuration. In
particular, the resonant poles Nf(S) are not included in
(7) and (10), while they do exist in (8), (9) and (11).
Comparing Fig. 1(a)-(c) with {(d)-(e), the zeros of the
controller directly appear in the closed-loop transfer
function for configurations (d) and (e), as well as for (10)
and (11). Consequently, we say that the configuration of
Fig. 1(a) is preferable. However, when a cascade
controller structure is to be used, one should select Fig.
1.

Example 1:

Bode Diagram
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Fig. 2 The Bode diagram of the plant in Example 1.
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Let us consider a simple feedback control system
including a notch filter F(s), where the plant model in [7]
is used

N (s) 2w s+t

_
G(s)_Dp(s) (5% +2¢w s +af) 12

where ¢ =005, w, =57. Let us examine how performance
is influenced by the particular feedback structure.

Suppose that we intend to design a first-order
controller leading to a closed-loop step response
exhibiting almost no overshoot and a 2% settling time of
less than 6 sec. Applying the synthesis method found in
[8] and [9], we have a target model

_ KN

Tk(s)—‘w, (13)

where
& (s) = s° +28.7365" +294.9045" + 1336.0615° + 267.123s +1908.659,
and K is the feed-forward gain.
To reduce the frequency response magnitude at w=w,
the following notch filter has been selected
5% +1.5708s +246.74
5)= 8% +25.1335 +246.74 (14
Let us find a first-order controller based on a
posteriori notch compensation (the details will be shown
in section 3.1 later). Then we have obtained
10.78s+17.736
Gls)= et5346
Here we have
y= 7;(s)r+5(s)do +S(5)G(S)di + [I—S(s)]n, (16)

for j=a,b,¢c,d e where r,y,d,,d,,n represents the reference

K, =T7.7356. (15)

input, closed-loop output, input and output disturbance,
and measurement noise, respectively. Also, S(s) and 2’;(3)
given in (6), (7)-(11) show that only the response to the
reference input is dependant on the structure whereas the
sensitivity functions are never changed even when

different configurations as Fig. 1(a)-(e) are in place.

Step responses of closed-loop transfer funtions
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Fig. 3 The step responses of the closed-loop transfer

functions of (7), (8) and (9).
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Figs. 3, 4 and 5, 6 show the time and frequency
responses of the closed-loop transfer functions (7)-(11).
We can see that the closed-loop transfer functions in Fig.
1(b), Fig. 1(c) and Fig. 1l(e) are influenced by the
resonances of the notch filter and Fig. 1(d), Fig. 1(e) are
affected by the controller zeros while that is not the case
for the system in Fig. 1(a).

Step responses of closed-loop transfer funtions
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Fig. 4 The step responses of the closed-loop transfer
functions of (10) and (11).

Bode diagrams of closed-loop transfer funtions
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Fig. 5 The Bode diagrams of the ‘closed-loop transfer
functions of (7), (8) and (9).
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Fig. 6 The Bode diagrams of the closed-loop transfer
functions of (10} and (11).




Therefore we conclude that the Fig. 1(a) configuration
is more desirable to use than the others.

In the above design, the a posteriori notch

compensation approach was used for the controller design.

Now, if we design the controller by means of the a priori

notch compensation (see section 3.2 for the details), we

have

10.785+7.735

Gls)= By

It can be easily seen that both controllers are almost

identical. Apparently, the frequency and time responses of

both designs are very similar. The question is whether or
this similarity is true for all cases.

K, =17.7355. a7

This is the problem that we are going to investigate in
this paper. We take only the effects on the design order
of the notch filter into consideration. The other issues
related to cancellation or shifting in the design can be
found in [10].

3. A COMPARATIVE STUDY ON NOTCH
COMPENSATOR DESIGN

Let us consider a practical design problem of a
feedback control system with a notch filter under a
two-parameter configuration, as shown in Fig. 1(a). The
closed-loop transfer function between the reference input
r and the closed-loop output y are given by (7). In this
section, we show two approaches to the controller design
by using the partial model matching method in parameter
space. Depending on whether or not the notch filter is
designed during or after the feedback controller design,
they are called either the "a posteriori compensation
approach” or the "a priori compensation approach”.

3.1. The a posteriori compensation approach

In this approach, we first design a feedback controller
in the absence of a notch filter. The controller design is
performed using the feedback system structure shown in
Fig. 7 (which does not coincide with Fig. 1(a)). Later the
overall system is implemented by using the feedback
controller and a notch filter that is selected independently
of the feedback controller.

Y

r e R AO) Yy
" K O 1 0.0 >

B(s) e

Fig. 7 The feedback control system without a notch filter.

Thus, in this design procedure the closed-loop transfer
function is given by
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K, - N (s) KO'NP(S)

B G T BB 04 &) - NGB )

(18)

and the target model shall be selected in a similar form
as (18), that is,

K, - N (s)
T (8):———5I (SP)

The design objective is then to find a controller
{4,(s),B/(s), K} so that T(s)=T(s).
controller in the feedback system shown in Fig. 1(a), the
loop transfer function and the sensitivity function of the

(19)

Replacing  this

overall system are given by

()= p Bl (20)
L) = R0, A, ()
5(6)= D)4 (s) 1)

R(s)Df (s)A1 (s)+1\§)(s)B1 (s)~
Also, the closed-loop transfer function of the overall
system is given by
KN, (s)
Rl(s)D;(s)A4;(s)+N,(s)B (s)
Note that the controller {4, (s), B (s), K} obtained by a

posteriori compensation does not guarantee closed-loop

T, (s)= (22)

stability because the denominator of (18) is not identical
to the closed-loop characteristic polynomial.

3.2. The a priori compensation approach

In this approach, after a notch filter compensates the
weakly damped modes of the plant, the controller design
is carried out with the plant including the notch filter.
Then, from (7), the resulting closed-loop transfer function

becomes
Tis)= Ko ) 23)
22 RG)D, (5)4, () N, () B, (s) -
We select the target model in a similar form as
BN
I;(s) = i) (24)

As for section 3.1, we will find the controller
parameters {4,(s), B (s), K,} so that T(s)= T}(s).
Then we have

(5) = o) ) (25)
L) = B D, ()40
§(5) = Dy )4, e) ©6)

R(s)D;(s)A4,(s)+ N, (s)By(s) *

The stability problem mentioned in section 3.1 does not
exist in the current approach. Nevertheless, comparing
(22) with (23), we can see that the overall system
properties may be quite different.

4. AN ILLUSTRATIVE EXAMPLE

In this section, we are going to show the differences
between both approaches through a numerical example.
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Example 2:

We consider an optical model whose numerator and
denominator polynomials are given by
N, (5) =1.7205 X 10"°s* +2.7080 X 10"%s% + 1.3239 < 10",
+ 1.8980 <107,

D,(s)=s"+ 1.8449x10°s” +2.2896 X 10"s* 4 3.2197 x 10'°s*
+ 1.0759 < 10"*s% +7.9767 < 1005 + 1.3171 X 10%°.
This plant has two rescnance modes as shown in
Table 1.

Table 1 The natural frequencies and damping ratios of the
resonances.

1st resonance 2nd resonance

Natural frequency

3 3
(rad/sec) L7503 <10 4.0623 % 10
Damping ratio 0.0606 0.0344

Suppose that the objective is to design a feedback
control system satisfying:

i) Overshoot < 20%;

i) Settling time < 0.02sec;

iii) Sensitivity peak < 10d5.

Let us assume that the first resonance is to be

compensated by a notch filter. According to (2) and

Table 1, the following notch filter with (=038 was
selected

2 +2.12x10%5+3.06 < 10°

133X 10%5+3.06 X 10°

The Bode magnitude diagrams of the original and

compensated plants are shown in Fig. 8.

27)

Bode Diagram
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Fig. 8 The Bode magnitude diagrams of the original and
compensated plants from Example 2.

We consider a modified I-PD controller in the form of
Fig. 1(a) where
_ Ks'tEs+ K

s)= (T 1) (28)
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To fairly compare the time and frequency responses of
the two approaches, the denominator polynomials of the
target models in (19) and (24) are assigned to be the
same, that is,

8 (s)=06,(s) =& (s). (29)

A target polynomial §(s) can be easily generated by

using the K-polynomial [8], [9] with o =21 and
7=0.0038.

8 (s) =5°+ 9.729x 10%s7 +4.507 X 107s® +1.290 < 10'1s°
+ 2.448 X 10*s* +3.304 X 10" 5% + 2,955 x 10052
+ 1.633 X 1025 +4.297 X 10%5.

4.1. A controller design based on the a posteriori
compensation approach

According to (18) and (19), the controller is computed

as
0.4762s% —789.7s +2.255 % 10°
= (30
s(s+2152)

G (s)
with K, =0.2255.

Step responses of closed-loop transfer functions
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Fig. 9 The step responses of the closed-loop transfer

functions of (18) and (19).

Frequency responses of closed-loop transfer functions
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Fig. 10 The frequency responses of the closed-loop

transfer functions of (18) and (19).



Figs. 9 and 10 show the step and frequency responses
of the designed and target transfer functions found in
(18) and (19). The closed-loop transfer function (22) of
the overall system has the time response shown in Fig.

13.

42. A controller design based on the a priori

compensation approach

Substituting ¢ (s) above into (24) and using the partial
model matching method [6] with (23), the controller is

obtained by

G (s)

with the feed-forward gain A, =0.2258,
The time and frequency responses of (23) and (24) are

shown in Figs. 11 and 12, respectively.

0.0098s° —501.35 +2.258 X 10°
= (3D

s(s+1736)

Step responses of closed-loop transfer functions

Trans. KIEE. Vol. 53, No. 1, JAN, 2010

10 and Fig. 12, reveal overall similar performances.
However, the closed-loop transfer function of the overall
system obtained via the a posteriori compensation is
given by (22) not (18). Comparing the time responses of
(22) and (23), as shown in Fig. 13, it is clear that the a
priori compensation gives a much better time domain

performance in terms of reduced overshoot and settling

time.
Step responses of closed-loop transfer functions
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Fig. 13 The step responses of the closed-loop transfer

functions of (22) and (23).

Open-loop frequency responses
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Fig. 15 The frequency responses of the sensitivity transfer

The time responses of (18) and (23), as shown in Fig.

functions of (21) and (26).

9 and Fig. 11, and the similar frequency responses in Fig.

3 A 27
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Figs. 14 and 15 show the frequency responses of the
open-loop transfer functions of (20) and (21), and of the
sensitivity functions of (25) and (26), respectively. It is
clear from these figures that the gain margins are similar
in both designs but the a priori compensation approach
gives a better phase margin and sensitivity.

Subject to the same target model that meets the
desired specifications, the characteristics of the designed
systems are shown in Table 2.

Table 2 The time and frequency performances of both
approaches.

overshoot 16.1% 8.84%

has a tendency to achieve much better time and
frequency domain characteristics than the a posteriori
approach. It is noticeable that canceling a weakly damped
pole by using notch filter may give a highly sensitivity
design.
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