DOI QR코드

DOI QR Code

Synergistic Increase of BDNF Release from Rat Primary Cortical Neuron by Combination of Several Medicinal Plant-Derived Compounds

  • Jeon, Se-Jin (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Bak, Hae-Rang (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Seo, Jung-Eun (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kwon, Kyung-Ja (Institute for Biomedical Sciences and Technology and Institute of Functional Genomics, Konkuk University) ;
  • Kang, Young-Sun (Institute for Biomedical Sciences and Technology and Institute of Functional Genomics, Konkuk University) ;
  • Kim, Hee-Jin (Department of Pharmacy, Sahmyook University) ;
  • Cheong, Jae-Hoon (Department of Pharmacy, Sahmyook University) ;
  • Ryu, Jong-Hoon (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Ko, Kwang-Ho (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Shin, Chan-Young (Institute for Biomedical Sciences and Technology and Institute of Functional Genomics, Konkuk University)
  • 발행 : 2010.01.31

초록

Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor involved in neuronal differentiation, plasticity, survival and regeneration. BDNF draws massive attention mainly due to the potential as a therapeutic target in neurological diseases such as depression and Alzheimer's disease. In a primary screening for the natural compounds enhancing BDNF release from cultured rat primary cortical neuron, we found that compounds such as baicalein, tanshinone IIa, cinnamic acid, epiberberine, genistein and wogonin among many others increased BDNF release. All the compounds at $0.1{\mu}M$ of concentration barely showed stimulatory effect on BDNF induction, however, their combination (mixture 1; baicalein, tanshinone IIa and cinnamic acid, mixture 2; epiberberine, genistein and wogonin) showed synergistic increase in BDNF release as well as mRNA and protein expression. The level of BDNF expression was comparable to the maximum BDNF stimulation attainable by a positive control oroxylin A ($20{\mu}M$) without cell toxicity as determined by MTT analysis. Both mixtures synergistically increased the phosphorylation of extracellular signal-regulated kinase (ERK) as well as cAMP response element binding protein (CREB), an immediate and essential regulator of BDNF expression. Similar to these results, mixture of these compounds synergistically inhibited the up-regulation of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide treatments in rat primary astrocytes. These results suggest that the combinatorial treatment of natural compounds in lower concentration might be a useful strategy to obtain sufficient BDNF stimulation in neurological disease condition such as depression, while minimizing potential side effects and toxicity of higher concentration of a single compound.

키워드

참고문헌

  1. Angelucci, F., Brene, S. and Mathe, A. A. (2005). BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry 10, 345-352. https://doi.org/10.1038/sj.mp.4001637
  2. Bhat, N. R., Zhang P, Lee J. C. and Hogan E. L. (1998). Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 18,1633-1641. https://doi.org/10.1523/JNEUROSCI.18-05-01633.1998
  3. Bibel, M. and Barde, Y. A. (2000). Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919-2937. https://doi.org/10.1101/gad.841400
  4. Chen, S. O., Fang, S. H., Shih, D. Y., Chang, T. J. and Liu, J. J. (2009). Recombinant core proteins of Japanese encephalitis virus as activators of the innate immune response. Virus Genes 38, 10-18. https://doi.org/10.1007/s11262-008-0299-9
  5. Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M. and Varon, S. (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295-2313. https://doi.org/10.1523/JNEUROSCI.17-07-02295.1997
  6. Cramer, T., Juttner, S., Plath, T., Mergler, S., Seufferlein, T., Wang, T. C., Merchant, J. and Hocker, M. (2008). Gastrin transactivates the chromogranin A gene through MEK-1/ERK- and PKC-dependent phosphorylation of Sp1 and CREB. Cell Signal 20, 60-72. https://doi.org/10.1016/j.cellsig.2007.08.016
  7. Cui, Q., Zhang, J., Zhang, L., Li, R. and Liu, H. (2009). Angelica injection improves functional recovery and motoneuron maintenance with increased expression of brain derived neurotrophic factor and nerve growth factor. Curr. Neurovasc. Res. 6, 117-123. https://doi.org/10.2174/156720209788185641
  8. Duman, R. S. (2002). Pathophysiology of depression: the concept of synaptic plasticity. Eur. Psychiatry 17 Suppl 3, 306-310. https://doi.org/10.1016/S0924-9338(02)00654-5
  9. Duman, R. S., Heninger, G. R. and Nestler, E. J. (1997). A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597-606. https://doi.org/10.1001/archpsyc.1997.01830190015002
  10. Ernfors, P., Van De Water, T., Loring, J. and Jaenisch, R. (1995). Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14, 1153-1164. https://doi.org/10.1016/0896-6273(95)90263-5
  11. Feng, H. L., Leng, Y., Ma, C. H., Zhang, J., Ren, M. and Chuang, D. M. (2008). Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience 155, 567-572. https://doi.org/10.1016/j.neuroscience.2008.06.040
  12. Ha, S. and Redmond, L. (2008). ERK mediates activity dependent neuronal complexity via sustained activity and CREB-mediated signaling. Dev. Neurobiol. 68, 1565-1579. https://doi.org/10.1002/dneu.20682
  13. Hemmings, S. M., Kinnear, C. J., Van der Merwe, L., Lochner, C., Corfield, V. A., Moolman-Smook, J. C. and Stein, D. J. (2008). Investigating the role of the brain-derived neurotrophic factor (BDNF) val66met variant in obsessive-compulsive disorder (OCD). World J. Biol. Psychiatry 9, 126-134. https://doi.org/10.1080/15622970701245003
  14. Hofer, M., Pagliusi, S. R., Hohn, A., Leibrock, J. and Barde, Y. A. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO. J. 9, 2459-2464.
  15. Hu, Y. and Russek, S. J. (2008). BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J. Neurochem. 105, 1-17. https://doi.org/10.1111/j.1471-4159.2008.05237.x
  16. Huang, E. J. and Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736. https://doi.org/10.1146/annurev.neuro.24.1.677
  17. Imming, P., Sinning, C. and Meyer, A. (2006). Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 5, 821-834. https://doi.org/10.1038/nrd2132
  18. Jung, H. A., Min, B. S., Yokozawa, T., Lee, J. H., Kim, Y. S. and Choi, J. S. (2009). Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull. 32, 1433-1438. https://doi.org/10.1248/bpb.32.1433
  19. Kim, D. H., Jeon, S. J., Son, K. H., Jung, J. W., Lee, S., Yoon, B. H., Choi, J. W., Cheong, J. H., Ko, K. H. and Ryu, J. H. (2006). Effect of the flavonoid, oroxylin A, on transient cerebral hypoperfusion-induced memory impairment in mice. Pharmacol. Biochem. Behav. 85, 658-668. https://doi.org/10.1016/j.pbb.2006.10.025
  20. Kim, S. R. and Kim, Y. C. (2000). Neuroprotective phenylpropanoid esters of rhamnose isolated from roots of Scrophularia buergeriana. Phytochemistry 54, 503-509. https://doi.org/10.1016/S0031-9422(00)00110-2
  21. Liu, C., Lin, N., Wu, B. and Qiu, Y. (2009). Neuroprotective effect of memantine combined with topiramate in hypoxic-ischemic brain injury. Brain Res. 1282, 173-182. https://doi.org/10.1016/j.brainres.2009.05.071
  22. Liu, C., Wu, J., Gu, J., Xiong, Z., Wang, F., Wang, J., Wang, W. and Chen, J. (2007). Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol. Biochem. Behav. 86, 423-430. https://doi.org/10.1016/j.pbb.2006.11.005
  23. Lyden, P. D., Jackson-Friedman, C., Shin, C. and Hassid, S. (2000). Synergistic combinatorial stroke therapy: A quantal bioassay of a GABA agonist and a glutamate antagonist. Exp. Neurol. 163, 477-489. https://doi.org/10.1006/exnr.2000.7394
  24. Maekawa, T., Sakura, H., Kanei-Ishii, C., Sudo, T., Yoshimura, T., Fujisawa, J., Yoshida, M. and Ishii, S. (1989). Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO. J. 8, 2023-2028.
  25. Mu, X., He, G., Cheng, Y., Li, X., Xu, B. and Du, G. (2009). Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behav. 92, 642-648. https://doi.org/10.1016/j.pbb.2009.03.008
  26. Novikova, L. N., Novikov, L. N. and Kellerth, J. O. (2000). BDNF abolishes the survival effect of NT-3 in axotomized Clarke neurons of adult rats. J. Comp. Neurol. 428, 671-680. https://doi.org/10.1002/1096-9861(20001225)428:4<671::AID-CNE7>3.0.CO;2-H
  27. Ozan, E., Okur, H., Eker, C., Eker, O. D., Gonul, A. S. and Akarsu, N. (2010). The effect of depression, BDNF gene val66met polymorphism and gender on serum BDNF levels. Brain Res. Bull. 15, 61-65.
  28. Park, J., Koito, H., Li, J. and Han, A. (2009). Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 11, 1145-1153. https://doi.org/10.1007/s10544-009-9331-7
  29. Piao, H. Z., Jin, S. A., Chun, H. S., Lee, J. C. and Kim, W. K. (2004). Neuroprotective effect of wogonin: potential roles of inflammatory cytokines. Arch. Pharm. Res. 27, 930-936. https://doi.org/10.1007/BF02975846
  30. Rumajogee, P., Madeira, A., Verge, D., Hamon, M. and Miquel, M. C. (2002). Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms. J. Neurochem. 83, 1525-1528. https://doi.org/10.1046/j.1471-4159.2002.01264.x
  31. Sairanen, M., Lucas, G., Ernfors, P., Castren, M. and Castren, E. (2005). Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 25, 1089-1094. https://doi.org/10.1523/JNEUROSCI.3741-04.2005
  32. Sasaki, T., Dai, X. Y., Kuwata, S., Fukuda, R., Kunugi, H., Hattori, M. and Nanko, S. (1997). Brain-derived neurotrophic factor gene and schizophrenia in Japanese subjects. Am. J. Med. Genet. 74, 443-444. https://doi.org/10.1002/(SICI)1096-8628(19970725)74:4<443::AID-AJMG17>3.0.CO;2-I
  33. Sato, K., Suematsu, A., Nakashima, T., Takemoto-Kimura, S., Aoki, K., Morishita, Y., Asahara, H., Ohya, K., Yamaguchi, A., Takai, T. (2006). Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat. Med. 12, 1410-1416. https://doi.org/10.1038/nm1515
  34. Soppet, D., Escandon, E., Maragos, J., Middlemas, D. S., Reid, S. W., Blair, J., Burton, L. E., Stanton, B. R., Kaplan, D. R., Hunter, T., et al. (1991). The neurotrophic factors brainderived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65, 895-903. https://doi.org/10.1016/0092-8674(91)90396-G
  35. Wagner, H. and Ulrich-Merzenich, G. (2009). Synergy research: approaching a new generation of phytopharmaceuticals.Phytomedicine 16, 97-110. https://doi.org/10.1016/j.phymed.2008.12.018
  36. Wang, Z., Hu, S. Y., Lei, D. L. and Song, W. X. (2006). Effect of chronic stress on PKA and P-CREB expression in hippocampus of rats and the antagonism of antidepressors. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31, 767-771.
  37. Xia, W. J., Yang, M., Fok, T. F., Li, K., Chan, W. Y., Ng, P. C., Ng, H. K., Chik, K. W., Wang, C. C., Gu, G. J., et al. (2005). Partial neuroprotective effect of pretreatment with tanshinone IIA on neonatal hypoxia-ischemia brain damage. Pediatr. Res 58, 784-790. https://doi.org/10.1203/01.PDR.0000180550.99162.BC
  38. Yamashita, K., Kotani, Y., Nakajima, Y., Shimazawa, M., Yoshimura, S., Nakashima, S., Iwama, T. and Hara, H. (2007). Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res. 1154, 215-224. https://doi.org/10.1016/j.brainres.2007.04.013
  39. Yu, H. L., Li, L., Zhang, X. H., Xiang, L., Zhang, J., Feng, J. F. and Xiao, R. (2009). Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by beta-amyloid 31-35. Br. J. Nutr. 102, 655-662. https://doi.org/10.1017/S0007114509243042
  40. Yu, X. Y., Lin, S. G., Zhou, Z. W., Chen, X., Liang, J., Liu, P. Q., Duan, W., Chowbay, B., Wen, J. Y., Li, C. G. and Zhou, S. F. (2007). Role of P-glycoprotein in the intestinal absorption of tanshinone IIA, a major active ingredient in the root of Salvia miltiorrhiza Bunge. Curr. Drug Metab. 8, 325-340. https://doi.org/10.2174/138920007780655450
  41. Zuccato, C. and Cattaneo, E. (2009). Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 5, 311-322. https://doi.org/10.1038/nrneurol.2009.54

피인용 문헌

  1. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection 2010, https://doi.org/10.1111/j.1600-079X.2010.00820.x
  2. Pharmacochemistry and integrated pharmacokinetics of six alkaloids after oral administration of Huang-Lian-Jie-Du-Tang decoction vol.16, pp.5, 2014, https://doi.org/10.1080/10286020.2014.913577
  3. Discovery of Neuritogenic Compound Classes Inspired by Natural Products vol.52, pp.36, 2013, https://doi.org/10.1002/anie.201302045
  4. Potential therapeutic action of natural products from traditional Chinese medicine on Alzheimer's disease animal models targeting neurotrophic factors vol.30, pp.6, 2016, https://doi.org/10.1111/fcp.12222
  5. Discovery of Neuritogenic Compound Classes Inspired by Natural Products vol.125, pp.36, 2013, https://doi.org/10.1002/ange.201302045