DOI QR코드

DOI QR Code

Evaluation of Position Error and Sensitivity for Ultrasonic Wave and Radio Frequency Based Localization System

초음파와 무선 통신파 기반 위치 인식 시스템의 위치 오차와 민감도 평가

  • Shin, Dong-Hun (Dept. of Mechanical and Information Engineering, University of Seoul) ;
  • Lee, Yang-Jae (Dept. of Mechanical and Information Engineering, University of Seoul)
  • 신동헌 (서울시립대학교 기계정보공학과) ;
  • 이양재 (서울시립대학교 기계정보공학과)
  • Published : 2010.02.01

Abstract

A localization system for indoor robots is an important technology for robot navigation in a building. Our localization system imports the GPS system and consists of more than 3 satellite beacons and a receiver. Each beacon emits both an ultrasonic wave and radio frequency. The receiver in the robot computes the distance from it to the beacon by measuring the flying time difference between ultrasonic wave and radio frequency. It then computes its position with the distance information from more than 3 beacons whose positions are known. However, the distance information includes errors caused from the ultrasonic sensors; we found it to be limited to within one period of a wave (${\pm}2\;cm$ tolerance). This paper presents a method for predicting the maximum position error due to distance information errors by using Taylor expansion and singular value decomposition (SVD). The paper also proposes a measuring parameter such as sensitivity to represent the accuracy of the indoor robot localization system in determining the robot's position with regards to the distance error.

위치인식시스템은 이동로봇이 실내에서 주행하는데 가장 중요한 기술의 하나인데 본 논문에서 연구된 시스템은 GPS 시스템과 유사하게 3 개이상의 위성 비이컨에서 초음파와 무선통신파를 발사하고 로봇에 부착된 리시버는 초음파와 무선통신파의 수신되는 시간차를 계산하여 각 비컨까지의 거리를 구하고 또한 이로부터 로봇의 위치를 계산한다. 일반적으로 거리정보는 초음파의 한 파장 이내의 오차를 가지게 되는데 본 논문에서는 이에 따른 위치오차를 테일러 확장과 SVD(Singular Value Decomposition)를 이용하여 구하였다. 또한 본 논문에서는 거리오차에 따른 위치오차의 정확도를 잴 수 있는 값으로 민감도를 제시하였다.

Keywords

References

  1. Brooks, R. A., 1986, “A Robust Layered Control System for a Mobile Robot,” IEEE J. of Robotics and Automation, Vol. RA-2, No.1, pp. 14-23.
  2. Clare. D. Mcgillem, 1989, “A Beacon Navigation Method for Autonomous Vehicles,” IEEE transactions on vehicles technology, Vol. 38, NO. 3, pp. 132-139. https://doi.org/10.1109/25.45466
  3. Nissanka B. Priyantha, Anit Chakraborty, and hari Balakrishnan, 2000, “The Cricket Location-Support System,” Proc. 6th ACM Mobicom Conf., pp. 32-43. https://doi.org/10.1145/345910.345917
  4. Roy Want, Andy Hopper, Veronica Falcao and Jonathan Gibbons, 1992, “The Active Badge Location System,” ACM Trans, Information System, pp. 91-102. https://doi.org/10.1145/128756.128759
  5. Lee, S. Y. and Jin, J.H., 2003, “Self-localization of a Mobile Robot Using Global Ultrasonic Sensor System,” Journal of CASE, Vol. 9, pp. 145-151.
  6. Fernando Figueroa, Ajay Mahajan, 1994, “A Robust Method to Determine the Coordinates of a Wave Source for 3-D Position Sensing,” Transactions of ASME, Vol. 116, pp. 505-511. https://doi.org/10.1115/1.2899245
  7. Billur Barshan, 2000, “Fast Processing Techniques for Acurate Ultrasonic Range Measurement,” Meas. Sci. Technol., Vol. 11, pp. 45-50. https://doi.org/10.1088/0957-0233/11/1/307
  8. Jeong Yong Yun, Dong Hun Shin, 2005, “Robot Localization and Calibration Using Ultrasonic and Ratio Frequency,” Journal of the Industrial Technology, Vol. 13, pp. 58-62.
  9. Jong Hwan Lim, Chul Ung Kang, 2002, “Grid-Based Localization of a Mobile Robot Using Sonar Sensors,” KSME International Journal, Vol. 16, No. 3, pp. 302-309.