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A POLAR, THE CLASS AND PLANE
JACOBIAN CONJECTURE

DosANG JOE

ABSTRACT. Let P be a Jacobian polynomial such as deg P = deg, P.
Suppose the Jacobian polynomial P satisfies the intersection condition
satisfying dim¢ Clz, y]/(P, Py) = deg P — 1, we can prove that the Keller
map which has P as one of coordinate polynomial always has its inverse.

1. Introduction

Let P,Q € C[z,y] be a pair of polynomial of two variables. (P, Q) is called
a Jacobian pair if the Jacobian of two polynomials,

oPoQ 0QOoP

[P,Q]:%?y*%?y

is non-zero constant. Let F(z,y) = (P(z,), Q(x,y)) be a map from C? to C?
induced by a Jacobian pair, which is usually called Keller map. The Jacobian
conjecture in dimension two is about whether every Keller map has the global
inverse over C? or not. There have been extensive studies and various partial
results for this conjecture, see more detailed information in the van den Essen’s
book [6]. It has been known that the conjecture is true if P is a rational
polynomial or has a one point at infinity by the earlier work of S. S. Abhyankar
and M. Razar [1, 12]. A main purpose of this paper is to prove the following
theorem.

Theorem. Let P be a Jacobian polynomial of degree n and deg, P = deg P =
n. Suppose dime Clz,y|/(P, P,) = n—1, then any Keller map defined by a pair
of Jacobian polynomials (P, Q) is invertible.

Let P be a Jacobian polynomial of degree n and deg, P = deg P = n. Sup-
pose dim¢ Clz, y]/(P, Py) = n—1, then we can show that the affine curve defined
by the polynomial P has genus zero and has one point at infinity, which will be
proved in the Proposition 4. Moreover this condition enables us to show that
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generic fiber P = ¢, ¢ € C is a rational affine curve. By the work of M. Razar,
N. V. Chau [12, 4], we can show that the Keller map (P, Q) is always invert-
ible. The main theorem will be proved in Theorem 7 in the Section 2. Hence
the Jacabian conjecture in dimension two can be fixed by proving the dimen-
sion condition dim¢ Clz,y|/(P, P,) = n — 1. Later, we will discuss a sufficient
condition for the plane Jacobian conjecture, which is so called equi-dimension
conjecture such as dim¢ Clz, y]/(P, P,) = dim¢ C[z, y]/{(x P, + yPy, P,). There
is no enough evidence for this conjecture should be true, however this equi-
dimension conjecture is equivalent to the Jacobian conjecture in dimension
two for the Jacobian polynomial P. The good things for the equi-dimension
conjecture is that there might be a pure algebraic approach by investigating the
monomial ideal structures of given two ideals using the Grobner basis theory.
Examples and some evidence for the conjecture is discussed in the Section 3.

Given plane curve C' in the projective plane, the notion of the dual curve in
dual space is well known. The degree of the dual curve, the class of the curve,
can be used to compute the genus of the curve combining with the multiplicities
of all infinitely near singular point of C'. The plane curve C defined by P(z,y)
in C2, the intersection number of C' and the C defined by P, in the affine
space C? is summing up to the class of the curve. The intersection number,
e = dim¢ Clz, y]/(P, P,) is in general strictly less than the class of the curve
C. The intersection number, e in the affine piece has the minimum value, i.e.,
deg P — 1 < e = dim¢ Clz, y]/(P, P,) among all possible smooth affine curve
which is monic in y.

2. Proof of Theorem
2.1. A polar and the class of projective plane curve

In this section, we will discuss what the intersection number dimc Clz, y]/
(P, Py) is meant to be. It eventually has some information of the class of given
smooth plane curve defined by P. The class of a projective curve is defined
to be the degree of its dual curve. Let C be a projective curve in CP2. The
definition of the dual curve C* is the set of the tangents of C. Unless C' contains
lines as component, C* is in fact an algebraic curve in CP?*. There is a way
to compute the class of given curve C' by using the intersection number of the
curve and its polar.

Definition 1. Let C be a plane curve of degree n defined by a homogeneous
equation F(z,y,2) = 0. Let p = (20 : yo : 20) € CP? be a point for which the
homogeneous polynomial
oF OF oF
Dy F(z,y,z) = Lo 5 + yoafy + 0o = zoFy + yoFy + 20F:
does not vanish identically. Then the curve of degree n — 1 with equation
D;F(x, y,z) = 0 is called the first polar of C relative to the point p.
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Let p; be the singular points of C' and let v;; be the multiplicities of the
infinitely near singular points of (C,p;). Finally, let vy be the orders of the
singular branches of C. Let n’ be the class of the plane curve C of degree n.
The following formulae holds for the class n'.

(1) n' =n(n-—1) ZU” v —1 Z(U(I;—l).

It is a part of the generalization of the Pliicker formulae found by Weierstrass
and M. Noether [3]. The proof of the formula (1) is reduced to the determi-
nation of the intersection of C' with C, a first polar of C relative to p. Let
{L.} be the associated family of lines passing through the fixed point p € CP2.
The main idea to proving equation (1), is to show that the difference of the
intersection numbers,
vy(C,C) —vy(C, L)

depends only on the singularity of the curve C'. Moreover the difference of the
intersection number can be computed by successive blowing up process at the
singular point ¢ € C, which is

(2) v(C, C) — vy(C, L, Zvj 0y

where p is the number of branches of C’to at ¢ and the sum is of the multiplicities
v; of all infinitely near singularities of (C, q).

Note that the class equation (1) is derived from the above equation. In
particular, if the point ¢ is a smooth point of Cy,, the formula (2) reads that

(3) 04(C,C) = vy(C, L) — 1 = v4(C, Le,) — vq(C).

Moreover suppose ¢ € C' is a singular point and vg(q) is the order of singular
branch of C' at ¢, we have the following equation from equations (1), (2).

=Y v =) =Y (@) = 1) = vg(CLe,) =D wuila)
(4) = 04(C, Le,) = vg(C).

The following lemma is followed from equations (3), (4).

Lemma 2. Let C' be a plane curve which does not contain a line component
and letp & C be a point in CP2. Let {L.} be the family of lines passing through
the given point p. The class of the curve C, which is the degree of the dual curve
C*, n' is computed in terms of the intersection number of C and L. as follows.

n' = Z vg(C, Le,) — v4(C),
qeC
where vy(C, L, ) is the intersection number of C and L. at the point q and v,

is the multiplicity of C at q.

Note that the line L., is uniquely determined by the point ¢ € C and the
summation in the equation is in fact finite because v,(C, L,) = v,(C) for
generic point g € C as long as C' does not contain a line component.
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Let p=(0:1:0) ¢ C. Suppose F(X,Y, Z) be the defining equation for C.

Then the first polar of C relative to has the equation g—g(X, Y,Z) =0. If we

introduce the affine coordinate z = %, Yy = %, then the pencil of lines through
p (with exception of line at infinity, Z = 0) becomes the family of parallel lines

r=c¢, ceC.
The curve C has the affine equation

f(z,y) =0, where f(z,y) = F(z,y,1).
The affine equation of the polar C reads

0

Lemma 3. Let C be the projective plane curve without a line component de-
fined by F(z,y,z). Let f(z,y) = F(z,y,1) € C[z,y] be the polynomial of two
variables. Suppose f(x,y) defines a smooth affine plane curve in C2. Then the
class of the C, n’ is computed as follows.

n' = dime Cla, y)/ (f, f,) + (v — > v5),

where voo = deg f is the sum of intersection multiplicities of C N Loo(Z = 0)
and vj is the multiplicity of C' at the point ¢; € C' N L.

Proof. Since the affine equation f(z,y) define a smooth plane curve in C2, a
polar C' defined by f, = g—; intersect the curve C at a smooth point g € C2.
Let {z.} be the family of line passing through p = (0 : 1 : 0) € CP?, then we
have

0,(C, ) = vy(C, z.,)—1, qeC>

Summing up the intersection multiplicities over the points in the affine plane
C?, we have

Z ve(Cywe,) — 1= Z v,(C, C) = dime Clz, y]/(f, f,)-

geC? gqeC?

Let 1,2, . . ., qi be the intersection of C' and C which lies at the line at infinity,
Z = 0. From equation (4), we have

Vg, (07 Z) - UQi(C) = Vg (C’ é) - ZU% (UQi - 1) - Z(Ulc(%) - 1)
and they are all summed up to the equation.
Z vg, (C, Z) — vq,(C) =deg f — qui = Voo — Zvi.
g€ Lo

The equation is followed from the Lemma 2, so we are done. O
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Example 1 (Class of polynomial curve). Let f be a polynomial of two vari-
ables, which has parametric representation by = = z(t),y = y(t), where
x,y € C[t]. Moreover, let n,m be the degrees of x,y respectively. The dual
curve C* has the parametrization p = p(t), ¢ = ¢(t), where p(t)z + q(t)y = 1 is
the affine equation of the tangent line to C' at (x(¢),y(t)), which has the form
8]
—y'(t) ' (t)
o (t)y(t) — =(t)y'(t)’ o (t)y(t) — x()y'(t)
The class of the curve C, which is the degree of the dual curve, is same as

degx +degy — 1 =n+m — 1. Assume n > m, the polynomial curve C has a
unique irreducible point at p = (1 : 0 : 0) and has the multiplicity n — m at p.

p(t) = q(t) =

2.2. Genus formula for plane curve

Let C be an irreducible projective plane curve of degree n. Then the genus
of the curve C' is computed as follows.

(5) 2g—2=n(n—-3 Zv” (vi — 1),

where the summation involves the multiplicities v;; of all infinitely near singu-
lar points of (C,p;). Equation (3) is followed by a computation of degree of
canonical divisor, adjoint linear system. For more detail, we refer to the book
3].

Proposition 4. Let f(z,y) € Clx,y] be an irreducible polynomial which defines
a smooth affine curve in C2. Let C be the projective plane curve defined by
F(z,y,z) which is the homogeneous equation of degree n such that f(x,y) =
F(z,y,1). Suppose dimc Clz,y]/(f, fy) = n — 1, then C defines a curve of
genus zero and has at most one point at infinity.

Proof. By the assumption of the polynomial of f, the point p = (0 : 1 : 0)
is not on the intersection of C' and the line at infinity, L(z = 0). From the
equation 2, we have

n' =n(n—1) ZUU vij — —Z(’Uk—l)
which is equal to the following equation by the Lemma 3.
n' = dime Cla, y)/(f, fy) + (Voo — Y 0k)-
Note that

Voo = Z Up(C, Log) =degC =n, Lo :={z=0}.

peECNL o
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By applying the genus formula 5, we have
29 —2 = n’—2n+Z(vk—1)
dime Cla, yl/(f, fy) + (Voo — D_vk) =20+ Y (v — 1)
(n—1)+n-2n+Y (-1)=-1-1,
k

where [ is the number of branches for the singular points of C. The curve
defined by the f is irreducible, hence the genus of the curve C' is always greater
than zero. So we show that C has a unique singular branch and genus zero. The
unique singular point of C' lies on the line at infinity z = 0 by the assumption.
The polynomial f has at most one point at infinity. O

2.3. Proof of the main theorem

Before proving the main theorem, it might be good place to mention the
previous results on the Jacobian conjecture and the invertibility of Keller map.
In 1979, the following theorem is proved by M. Razar [12].

Theorem 5 ([12]). A Keller map F = (P, Q) has an inverse if P is a rational
polynomial and all fibers P = c,c € C, are irreducible.

Later in 1990 R. Heitmann [9] presented another algebraic proof for Razar’s
observation. All the proofs for the theorem ends up with showing that the re-
striction of @ to each fiber of P is a proper map. Theorem 5 has been extended
to the generic case when the generic fiber of P or @ is rational polynomial.

Theorem 6 ([4, Lé]). A Keller map F = (P, Q) has an inverse if P or Q is a
rational polynomial.

Here the statement that P is rational polynomial is meant to be that the
generic fiber of P is a rational curve, which is a two dimensional topological
sphere with a finite number of punctures. Let me sketch the main idea of
the theorem [4] done by N. V. Chau. Given a Keller map F = (P,Q) with
rational polynomial P, let f = (p,q) : X — P x P be a regular extension
over a compactification X of C2. The divisor at infinity D := X\C? so called
horizontal component of P which is an irreducible component D of D such that
the restriction to D of p is not constant. And D is called a section of P if
the degree of the restriction p|p is one. He proved that P must has a unique
section, which implies that every fiber P = ¢ has a unique irreducible branch
at infinity. Hence by the Theorem 5, F = (P, Q) is invertible.

Theorem 7. Let P be a Jacobian polynomial of degree n and deg, P = deg P =
n. Suppose dime Clz,y|/(P, P,) = n—1, then any Keller map defined by a pair
of Jacobian polynomials (P, Q) is invertible.



A POLAR, THE CLASS AND PLANE JACOBIAN CONJECTURE 217

Proof. First of all, it is clear that P—c is irreducible for generic ¢ € C. Moreover
we have

dime Clz, y]/(P — ¢, Py) = dim¢ C[z, y]/(P, P,) =n — 1 for all ¢ € C.

By the Proposition 4, we can show that P — ¢ is a rational curve with one point
at infinity for generic ¢ € C. Thus P is a rational polynomial. Hence by the
Theorem 6, the Keller map (P, Q) has a polynomial inverse. U

Remark 8. First of all, one can note that if we prove that the polar-intersection
condition dim¢ C[z,y]/(P, P,) = n — 1 is satisfied for any Jacobian polynomial
we can directly prove the Jacobian conjecture is followed by the theorem of
S. Abhyankar [1, 6]. Secondly, we can show that the Keller map (P, Q) is
proper easily if one can prove the P — ¢ has a polynomial parameterization for
all c € C.

3. Equi-dimensional conjecture
3.1. Equi-dimension conjecture

Let us discuss what the condition, dim¢ Clz,y]/(P, P,) = n — 1 meant to
be. And how many of the plane curves satisfies such condition. So far we have
investigated, only examples we have known are the defining equations of the
embedding of lines in C? which is a smooth rational curve with one point at
infinity.

Example 2 (Embedding of line). Let P be a defining equation of the em-
bedding of line in C2. The affine curve defined by the polynomial P has a
parametric representation by x = z(t),y = y(t), where z(t),y(t) € C[t]. Then
we have f,(x(t),y(t)) = coa’(t) for some ¢o € C* [7], where f(z(t),y(t)) = 0.
Hence dim¢ Clz, y|/(P, P,) = deg, z'(t) =n — 1.

Among all the polynomial curves of parameterization = = z(t),y = y(t)
where deg, x(t) = n,deg, y(t) = m, the only possible pair of degrees for the
embeddings of line has to be like that m divides n under the assumption m <n
[2]. Moreover there are more complicated structure for the parameter spaces of
smooth polynomial curves, i.e., embeddings of line for given degree m,n [10].

As a result, it naturally gives rise to have the following question whether the
condition dim¢ Clz,y|/(P, P,) = n — 1 is satisfied for the Jacobian polynomial
P to fix the plane Jacobian conjecture.

Question. Can the condition for a Jacobian polynomial P,
dime Clz,y]/(P, P,) = n — 1, where deg P =deg, P =n
be derived from the constant Jacobian condition for the pair (P,Q)?

Suppose the polynomial P is a Jacobian polynomial, i.e., there exists a
polynomial @ such that the pair P,Q € Clz,y] has constant Jacobian. And
suppose moreover the polynomial is monic in y-variable and deg P = deg, P,
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then the ideal generated by xPz +yP, and P, is same as the one generated by
x, Py since z is generated by x Py, P,.

r=2(PQy — PyQu) = Qy(xPy) + (—2Qz) Py.
Thus we have
dimc Clz,y|/(z Py + yPy, P,) = dimcClz,y]/(z, Py)

= degP—-1=n-1.

It gives rise to make a following conjecture.

Conjecture 1. Let P be a polynomial of two variables which is monic in y
and deg, P = deg P. Can one describe a family of polynomial of two variables
which satisfy the following condition?

(6) dime Clz,y]/(P, Py) = dimc Clz,y]/(zP: +yPy, Py).

We can not expect the equi-dimension condition (6) is true for all polynomial
P € Clz,y]. However we can not find any example polynomial P which does
not satisfy the equation in the conjecture. We have checked the equation holds
for many bi-variate polynomials by running the singular program. We will
presents the some of the examples in the end of this paper. The following
examples explain Conjecture 1 is true for each invertible Jacobian polynomial,
which is a defining equation for the embedding of line [2].

3.2. Grobner basis approach to Jacobian conjecture

There is a way to approach Conjecture 1 via the Grobner basis theory. Let
P(z,y) € Clz,y] and P, = %—f,Py = %. Let’s assume that I = (P, P,),J =
(xPy + yPy, P,) is the associated zero-dimensional ideals. Suppose we choose
a monomial order > on Clz,y], we can define the associated monomial ideal
(LT(I)) called initial ideal, which is generated by the leading terms of all ele-
ments in I. The Grobner basis for [ is a finite set of generators of the ideal
which also generate the initial ideal (LT(I)) for given monomial order. For the
ideals I = (P, P,),J = (xP,+yP,, P,) in Conjecture 1, we have investigated the
initial ideals I, J with respect to the standard lexicographic order as z < y via
the Singular program. The computation run by the Singular shows that even
though the initial ideals I, J are not equal to each other, the equation in Conjec-
ture 1 holds for substantially many polynomials P € C|x, y] which are monic in
y and deg P = deg, P. The following examples are the one of them. This may
be the part of evidence why Conjecture 1 should be true, henceforth the Jaco-
bian conjecture in dimension two should be true. For the following examples,
we denote that I,.J be the initial ideal of I = (P, P,)),J = (zP, + yP,, P,) for
any given polynomials P € C[z,y]. The lexicographic order with x < y is fixed
for the computation of the following examples. Let d = dim¢ Clz,y]/(P, P,),
s = dim¢ Clz, y|/(z P, + yPy, Py) be the dimensions respectively.
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Example 3 (Computational evidence for equation (6)).

Pi=(y+@@+¢*))’+ @@+’ +y+(x+¢°)? — d=s5=23
Po=(y+(x+y))°?+(@+1y3))>?+2, = d=s5=238
Py=x+a2"y? +2%y* + M +y, = d=s5=276
Pp=a? 4+ 1y 4y, — d=s5=552.

Note that the polynomial P; in the example is a coordinate of C?, in fact a

defining equation of an embedding of line in C2.

3.3. Discussions

The possible counterexample for the Jacobian conjecture in dimension two

has to be a curve of higher genus or a curve having two points at infinity.
There would be closed conditions of the polynomials of given degree for which
equation (6) does not hold. If then, the last challenge one can take would be

to

prove that Jacobian condition is complementary to it.
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