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A NOTE ON FUNCTIONS OF MEAN BLOCH TYPES

HonG RAE CHO, Youn K1 KiM, ERN Gun KwoN*, AND JIN KEE LEE

ABSTRACT. A characterization of the holomorphic function spaces of me-
an Bloch type on the unit disc is deduced in terms of the induced distance.

1. Introduction

We introduce basic definitions, previous results, and the goal of this paper
that we will involve.

Let D = {z € C: |z| < 1} be the open unit disc of the complex plane C and
let T ={z € C: |z| = 1} be the boundary of D.

For o > 0, let B, (D) be the space of holomorphic functions on D satisfying

sup (1 — [2[2)" /()] < oc.
z€D

For a > 0 and 1 < p < oo, let BP(D) be the space holomorphic functions
satisfying

%
sup (1= ([ 1700Pas(0)” < .
0<r<1 T

The spaces B, (D) and B2 (D) occurred in the literature in connection with
the Lipschitz space Lip, (D) and the mean Lipschitz space Lip P (D) which, for
0<a<land1l<p< oo, are defined to consist of f holomorphic in D such
that

|f(z)7f(w)|§0|ziw‘aﬂ Z,’wGD,
and of f € HP(D) such that

(/T |f(Q) = f(TIC)IpdG(C)> T<COl—ql, neT
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respectively. Here HP(D) denotes the classical Hardy space on D. A famous
theorem of Hardy and Littlewood verified the connection

FeLip2(p) = swp - ([ If’(rC)I”dU(C)); <.

0<p<1
See [1].
We, in this note, are interested in the induced distances on the spaces.

K. Zhu defined a distance on D and characterized the space B, (D) in terms of
the distance as follows.

Theorem A ([2, Proposition 16 and Theorem 17]). For a > 0, and z,w € D,
let

do(z,w) = sup{|f(2) — f(w)] : f € Ba(D), sup (L= lu?)* 1/ (W) < 1}

Then d,, is a distance on D and

da (2, -
hmM:G,M?) @«
w—2z \z—w|

Theorem B (]2, Theorem 18]). Suppose a > 0 and f is holomorphic on D.
Then
f € Ba(D) <= |f(z) = f(w)] < C da(z,w), z,we D

for some positive constant C. Moreover, for all f € B, (D),

2\ | 4 f(z) = f(w)|
sup (1= 121" [f (») = S;g:D P RERDRE
See [3] for the case a = 1.
The goal of this note is to find a variant of Theorem A and Theorem B under
the settings of B2 (D). See Section 2 for our results of this paper.
We note that, when 0 < o < o0 and 1 < p < oo, B2(D) is a Banach space
equipped with the norm

1 Flszcoy == 1FO)+ sup (1—r2)° ( / If’(rc)pdo(c))p~

0<r<1

2. Results

For simplicity, the class of holomorphic functions on D will be denoted by
H(D) and we will make use of the customary notation:

My(r, f) == (/Tlf(ropdo—(c)f, 0<r<l.

We define a distance and obtain Theorem 2.3 and Theorem 2.4 which cor-
respond to Theorem A and Theorem B.
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Definition 2.1. Fora >0, 1<p<oo0,0<r <1, and n €T, let dp o ,(1,7)
be defined by

dpar(1,1) = sup { ( R .f‘(rﬁC)\”dJ(C)) "L f e H(D), (- ) My(r, ') < 1} .

Theorem 2.2. If we extensively define

dp,a,r(C1) = dpar(1,Cn),  CneT,
then dp o, 15 @ metric on T
Theorem 2.3. Fora >0, 1 <p<oo,and0<r <1,

. d ar(C 77) —«
lim 22— (1 —2) 7"
n=¢ r|¢ =] ( )

Theorem 2.4. Suppose a >0, 1 <p < oo, and f € H(D). Then

feBr(D (/ |f(rQ) = F(raQ)|P do(¢ ))5 < Cdpar(ln), n€T,0<r <1,

for some positive constant C. Moreover, for 0 < r <1,

= ([ Ireoras ) —sup o ([ 1760 - s Pan@) )
77ET Dy, T

Corollary 2.5. Suppose « >0, 1 <p < oo, and f € H(D). Then

sy = 15O+ s swp o ([ 1760 - soa0pas))’

0<r<1 neT

3. A lemma
Lemma 3.1. (1) Let 1 < p < o0 and o = %, Then there is a function

f € HP(D) for which || f||gz(py = 1. Moreover, we may take f such that

31) (f |f'<p<>|pda<<>)’l’ - T

for every p: 0 < p<1.

) Let 0 < p < o0 and o = %. Then there is a function f € H(D) satisfying

3
f

(2
1) for every p:0 < p < 1.

(3) Let 0 < p<ooand 0 < a < 1. Fora fizedr : 0 < r < 1, there is
S

H(D) for which
(f |f’<r<)|pdo<<>)'l’ -
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Proof. (3) is obvious. For example, take f(z) = (1 —72)"“2. We prove (2) and

(3). Take

(1-2)~! [(1—2:)1*% —1], if p £ 2
f(z) =
log(1 — 2), ifp=2.

Then f is holomorphic on D with f(0) = 0, and

do(C)

(1-2)1-p0) 7 [
[ 1#60rastc /’ T
1
2

= [ 11 2ao(c) -
T

( / If’(pC)I’”dO(C)f - (1_1[))

This verifies (2). The same function satisfies || f|zzp) = 1. Since

so that

sup/ |1 —r¢[P2do(¢) < oo ifl<p<oo
and -
sup [ [log(1 = rQ) do(¢) < oc,
we have f € HP(D). Thgs V(:epriﬁes (1).
4. Proofs of the results

Proof of Theorem 2.2. If dp o ((,n) = 0, then { = n obviously.
inequality follows from Minkowski’s inequality.

Triangular
O

Proof of Theorem 2.3. Note first that we may assume ¢ = 1. Fix r and take
f € H(D) with (1 —r2)> ([ |f (r)|P do(¢ )) = 1. Then by the definition of

dp,o,r and Fatou s Lemma, it follows that

lim inf W legnjglf p— (/ |f(rQ) = f(rn¢)|Pdo(C ))p

O — £ | z
it f || o)

(
> (/ lim inf ‘JW P
T
< :

| 40)

1
P
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Hence, for the conclusion of Theorem 2.3, we are sufficient to show

d 1
lim sup 717’5”( x)

< (1—r?)7
n—1 r[1—mn

Let f € H(D) with (1 —12)® ([, |[f'(rQ)[? do(¢))* < 1. It simply follows

that
hog '
/0 %[f(re“ )] dt| <r

so that by Minkowski’s inequality

h
[f(r¢) = fre™ Q)| = | |f'(re™¢)ldt,

Hence, for 1 #n e T,

([ 1566~ rtmerastc >>; < rlArg 7] ( /T |f'<ro|pdo<o)’l”

1
Taking the supremum over all f € H(D) with ( ) ([ 1 (r)|Pdo(¢)) 7 <
1, we obtain

dp,oz,?"(la 77) (1 -r ) T|AI‘g 77‘

Thus,
dp,a,r(1,1) <(1- rz)_arlArg nl
r—rn) r—rn)
Since "
li =1
B0 [T—eih] 7
we finally obtain
d o,T 17 -
limsup P, ( 77) < (1 _ 7"2) a
n—1 r —rn|
The proof is complete. O

Proof of Theorem 2.4. Fix r. If n # 1, then by the definition of d, 4 r,

W(/ lg(r¢) — g(rn¢)[Pdo (¢ )) <1
it g € H(D) with
(1—1r?%) (/|g (rQ)|P do(¢ )) <1.

f
(1—r2)e(fy |/ (rQ)Pdo (€))7

By considering

g=
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for a nonconstant holomorphic f, it follows that

o (60 = semras )’
(1—12) (/|f (rO)P do(¢ )

(4.1) sup s ([ 1560 - semopano))

ner ar
1 P,

(1—12) (/|f Q)P do(c )

Conversely, by Fatou’s Lemma and Theorem 2.3,

Therefore

o s ([1766) - emeras o)
> liminf —— </ |f(r¢) — f(rm¢)|Pdo(C )>p
n—1 dpar 1 77

(4.2)
f(r¢) = f(rn¢)

r—rn

r—1rn ‘
dp,am(lan)

= liminf [(/T da(c)>é
(1—12) (/|f (rO)|Pdo(C ) .

By (4.1) and (4.2) we have

(4.3) (1—12) (/|f rO)Pdo(c )
= Sntelg R </ |f(rQ) — f(rn¢)|Pdo(C )>

Proof of Corollary 2.5. Taking supy.,.., on both sides of (4.3), we obtain

_ ])
s (117 (/'f o))’

S ( [ 1760 - straopastc >)p.

0<r<1 ner do(r,n)

1
P

Hence follows the conclusion.
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We remark that our distance is actually restricted on 7. We do not know
whether we can extend the distance to D (for example, by using more powerful
version of Lemma 3.1).
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