
Bull. Korean Math. Soc. 47 (2010), No. 1, pp. 63–71
DOI 10.4134/BKMS.2010.47.1.063

IMPERSONATION ATTACK ON THE STRONG
IDENTIFICATION BASED ON

A HARD-ON-AVERAGE PROBLEM

Bonwook Koo, Daesung Kwon, Jooyoung Lee, and Jung Hwan Song

Abstract. In this paper, we analyze a zero-knowledge identification
scheme presented in [1], which is based on an average-case hard prob-
lem, called distributional matrix representability problem. On the con-
trary to the soundness property claimed in [1], we show that a simple
impersonation attack is feasible.

1. Introduction

Zero-knowledge proof is an interactive method for one party to convince
another of knowledge of a secret without revealing any information on the
secret. It has been used in authentication systems where a prover wants to
prove her identity to a verifier via some secret information, but does not want
the verifier or a wiretapper to learn anything about the secret. The zero-
knowledge proof must satisfy completeness, soundness, and zero-knowledge
property. Completeness is satisfied if an honest verifier always verifies an hon-
est prover. Soundness is satisfied if no cheating prover can convince an honest
verifier of knowledge of the secret. Zero-knowledge property stipulates that no
cheating verifier learns any information on the secret except the fact that the
prover knows the secret. Zero-knowledge proofs was introduced in the semi-
nal paper of Goldwasser, Micali, and Rackoff [3] and realized as Fiat-Shamir
scheme and Schnorr’s scheme [2, 6]. They are based on well known problems
in number theory such like integer factoring problem and discrete logarithm
problem. Since there are no proofs on the hardness of these problems, cryptog-
raphers have published alternative schemes based on NP-complete problems in
combinatorics, coding theory, graph theory, and so on.

NP-complete problems are widely used as basis of cryptographic protocols.
However, most of NP-complete problems allow for efficient solvers on random
instances, making useless their worst-case difficulty. For this reason, Levin et al.
introduced a notion of average-case complexity which deals with distributional
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problems assuming that instances are chosen from a certain distribution [5]. A
pair of a decision problem and a distribution of instances is called a distribu-
tional NP problem, if some non-deterministic polynomial time algorithm solves
the problem on random instances chosen from the distribution. A distributional
NP-complete problem is similarly defined. It can be regarded as analogous to
an NP-complete problem in worst-case analysis.

In [1], the author presented a new identification scheme based on the hard-
ness of distributional matrix representability problem, which is known to be
distributional NP-complete, and claimed that the success probability of imper-
sonating an honest prover is not greater than 2−m, where m is the number
of rounds in a session. However, in this paper, we show that a simple im-
personation attack is feasible with success probability almost one! Our attack
suggests that the security proof of the identification scheme is flawed. In the
next section, we briefly review the scheme and the underlying problem. In
Section 3, our impersonation attack is illustrated with a toy example.

2. Caballero-Gil’s identification scheme

2.1. Underlying problem

A distributional decision problem is a pair of a decision problem and a
probability distribution of instances. In the matrix representability problem
with security parameters r and k, an instance consists of a square integral
matrix M of order r, a set P = {M1, M2, . . . , Mk} of k distinct square integral
matrices of order r, and a positive integer n. Each instance is chosen uniformly
at random. The problem is to decide if matrix M can be represented as a
product of n matrices in P. For r = 20, the matrix representability problem
has been proved as distributional NP-complete [7]. (So we assume r = 20
throughout this paper.) Now the Caballero-Gil’s identification scheme is based
on the search version of the matrix representability problem.

2.2. Identification scheme

Caballero-Gil’s identification scheme involves two parties: a prover Alice and
a verifier Bob. That is, Alice wants to prove herself to Bob. In the preparation
steps, Trusted Authority(TA) generates and publishes a set P = {M1, . . . ,Mk}
of k invertible r × r matrices of integer entries. (The set P is commonly used
for every user in the system.) Then Alice chooses a private (ordered) subset

PA = {Mi1 , . . . ,Min} ⊂ P,

and computes her public information MA =
∏n

j=1 Mij , where n is a system
parameter. Now each session of Caballero-Gil’s scheme consists of m rounds,
and each round is executed as follows. Note that integers m and t in the
following description are system parameters.

(1) (Commit) Alice chooses an integral vector v of size r and an integer
x between 2 and 2n uniformly at random, and sends Bob 2k witness
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vectors {Miv, MT
i v}i=1,...,k in a random order and a witness integer

vT MA
xv.

(2) (Challenge) Bob randomly selects a bit e ∈ {0, 1}, and depending on
its value, requests to Alice:
(a) (Decommit) vector v and integer x if e = 0.
(b) (Proof) vectors MT

i1
v, Minv and r × r integral matrix MA1 =

Mi1
−1 ·MA

x ·Min

−1 if e = 1.
(3) (Response) Alice responds to the challenge.
(4) (Verification) Depending on the selected challenge, Bob checks that:

(a) if e = 0, the witness information is correct.
(b) if e = 1, the witness integer vT MA

xv is obtained from the product
of vT Mi1 , MA1 , and Min

v. Then Bob runs the following steps
recursively for j = 2, . . . , t:

b1. (Commit) Alice sends Bob a witness integer vT MAj−1
xv.

b2. (Proof) Alice indicates to Bob two vectors MT
ij

v and
Min−j+1v, and sends him r×r integral matrix MAj

= M−1
ij
·

MAj−1
x ·M−1

in−j+1
.

b3. (Verification) Bob checks that the witness integer
vT MAj−1

xv is obtained from the product of vT Mij , MAj

and Min−j+1v.

3. Impersonation attack

The soundness of this scheme depends on the difficulty of finding matrices
MT

ij
v, Min−j+1v and MAj such that vT MAj−1

xv = vT Mij MAj Min−j+1v without
knowing the private subset PA. However, one can generate valid responses
without knowledge of PA.

3.1. Attack scenario

In order for an adversary Oscar to impersonate Alice to Bob, Oscar does the
followings for each round.

(1) (Commit) Oscar randomly chooses an integral vector v of size r, an inte-
ger x between 2 and 2n and a set of indices {i1, . . . , in} from {1, . . . , k}.
Then Oscar sends Bob 2k witness vectors {MT

i v, Miv}i=1,...,k in any or-
der and a witness integer vT MA

xv. Note that Oscar is able to compute
the witness vectors and the witness integer from public information P
and MA.

(2) (Challenge) Bob randomly selects a bit e ∈ {0, 1}, and depending on
its value, requests to Oscar:
(a) (Decommit) vector v and integer x if e = 0.
(b) (Proof) vectors MT

i1
v, Minv and r × r integral matrix MA1 =

Mi1
−1 ·MA

x ·Min

−1 if e = 1.
(3) (Response) Oscar responds to the challenge as follows.
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(a) if e = 0, Oscar responds with v and x that he chose.
(b) if e = 1, Oscar finds an integral matrix H1 satisfying

(1) vT Mi1 ·H1 ·Min
v = vT MA

xv,

and responds with MT
i1

v, Min
v and H1. Finding H1 satisfying

equality (1) is only a slight difficulty of our attack, and we discuss
a method of finding such a matrix in the following section.

(4) (Verification) Depending on the selected challenge, Bob checks that:
(a) if e = 0, the witness information is correct.
(b) if e = 1, the witness integer vT MA

xv is obtained from the product
of vT Mi1 , H1, and Min

v. (It is obvious from (1).) Then Bob runs
the following steps recursively for j = 2, . . . , t:

b1. (Commit) Oscar chooses a random integral matrix Hj , com-
putes an integer

(2) zj = vT Mij
·Hj ·Min−j+1v,

and sends Bob the integer zj as the witness integer.
b2. (Proof) Oscar indicates to Bob two vectors MT

ij
v and

Min−j+1v, and sends him the integral matrix Hj .
b3. (Verification) Bob checks that the witness integer zj is ob-

tained from the product of vT Mij , Hj , and Min−j+1v. (It is
obvious from (2).)

3.2. Finding the matrix H1

The success probability of our attack depends on Oscar’s ability to find
a matrix H1 satisfying equality (1). Simplifying notations, we want to find
an r × r integral matrix H satisfying uT Hw = y for a given integer y and
given integral vectors u and w. As an additional condition, we require that
H is invertible and its determinant is divided by the determinant of MA since
otherwise Bob would be able to check if the matrix H is faithfully computed.
However, we note that this step is not specified in the original description of
the scheme.

Let H = (hij), u = (u1, . . . , ur) and w = (w1, . . . , wr). Then a simple
computation shows

(3) uT Hw =
∑

1≤i,j≤r

uiwjhij = y.

For simplicity, we will find hij satisfying the following conditions.

(1) hij = 0 if i > j,
(2) hij = 1 if i = j < r,
(3) hij = det(MA) if i = j = r.
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Then, equation (3) is rewritten as follows.

(4) uT Hw = urwr det(MA) +
r−1∑

i=1

uiwi +
∑

1≤i<j<r

uiwjhij = y.

Since we know u, w, and MA, equation (4) is simplified as

(5)
∑

1≤i<j<r

uiwjhij = Y

for a constant Y .
By re-indexing the coefficients and the variables, we see that finding an

integer solution to equation (5) is equivalent to finding an integer solution
(x1, x2, . . . , xt) to an equation of the following form,

(6) a1x1 + a2x2 + · · ·+ atxt = Y,

where every coefficient is integral and t = r(r−1)
2 . If there exists i∗ ∈ {1, . . . , t}

such that ai∗ 6= 0 divides Y , then xi∗ = Y/ai∗ and xi = 0 for i 6= i∗ would be
a trivial solution to (6). Also, if there exists a co-prime pair (ai, aj), then we
would be able to find an integer solution by the extended Euclidean algorithm.
In general, a condition for equation (6) to have integer solutions can be derived
from Bézout’s identity.

Lemma 3.1 ((Bézout’s identity) [4]). If a and b are nonzero integers with the
greatest common divisor d, then there exist integers x and y such that

(7) ax + by = d.

Moreover, for any integers a1, a2, . . . , an with the greatest common divisor g,
there exist integers x1, x2, . . . , xn such that

(8) a1x1 + a2x2 + · · ·+ anxn = g.

Since the integers satisfying (8) can be found by iteratively applying the
extended Euclidean algorithm, Bézout’s identity implies that we could solve
equation (6) if gcd(a1, a2, . . . , at) = 1. Now we estimate the probability P
that gcd(a1, a2, . . . , at) = 1 under the assumption that the coefficients ai’s are
distributed uniformly at random within the interval [1, N ] for a sufficiently large
N . Let pd denote the probability that d is a divisor of all ai, i = 1, 2, . . . , t.
Then it is easy to show that pd = 1/dt. Since gcd(a1, a2, . . . , at) = 1 if and
only if there is no common divisor d ∈ [2, N ] for {a1, a2, . . . , at}, we obtain the
following inequality.

(9) P ≥ 1−
N∑

d=2

pd = 1−
N∑

d=2

1
dt

.
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A straightforward computation shows

P ≥ 1−
(

1
2t

+
1
3t

+ · · ·+ 1
N t

)

= 1−
(

1
N t

(
1

(2/N)t
+ · · ·+ 1

(N/N)t

))

≥ 1− 1
N t−1

∫ 1

1/N

1
xt

dx

= 1− 1
t− 1

·
(

1− 1
N t−1

)

≥ 1− 1
t− 1

.(10)

For example, let r = 20. Then t = r(r−1)
2 = 190, and the probability P that

equation (6) has a solution is estimated by P ≥ 1− 1/189 ≈ 0.9947.

3.3. Example

In this section, we illustrate our impersonation attack for the first round of
the scheme with a small example. Let

P = {M1, M2,M3,M4,M5,M6,M7,M8},
and

M1 =




−1 −2 −5 2
−3 2 2 −3

1 −3 6 1
2 0 3 3


 ,M2 =




−4 −1 −1 0
2 0 3 3
0 5 −1 2

−2 −3 1 0


 ,

M3 =




2 −4 3 3
0 1 −7 2

−1 5 1 0
1 0 4 5


 ,M4 =




−2 0 −3 5
0 1 4 −1
4 3 0 4
1 −1 2 0


 ,

M5 =




−1 −4 −1 3
0 5 −3 −1
6 −2 0 1
3 1 4 −4


 ,M6 =




−2 0 5 −2
0 −4 0 3
2 −2 −1 1

−6 3 4 −2


 ,

M7 =




2 1 0 1
−3 2 4 −3

1 2 2 0
0 −4 −1 3


 ,M8 =




−1 0 2 −8
2 3 −3 0
0 6 4 −1
4 −2 3 −5


 .
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If Alice’s private subset is PA = {M7,M2,M5}, then the corresponding public
information would be

MA =




29 6 35 −29
32 82 −62 −20
48 49 13 −46

−76 −12 0 20


 ,

with det(MA) = −1344.
In the first commit step of the scheme, Oscar chooses v = (0, 0, 1, 0)T , x = 2

and (i1, i2, i3) = (1, 2, 3). Then Oscar sends Bob a witness integer

y = vT MA
xv = −1189,

and the witness vectors associated with M1, M2, and M3. Suppose that
Bob selects e = 1 in the challenge step. Then Oscar computes u = M1v =
(1,−3, 6, 1)T and w = M3v = (3,−7, 1, 4)T , and finds an integral matrix H1

satisfying uT H1w = y by solving the following equation.

(11)
(

1, −3, 6, 1
)·




1 x1 x2 x3

0 1 x4 x5

0 0 1 x6

0 0 0 −1344


·




3
−7

1
4


 = −1189.

Solving equation (11) is equivalent to solving the following equation.

(12) −7x1 + x2 + 4x3 − 3x4 − 12x5 + 24x6 = 5346.

We have a trivial integer solution (x1, x2, x3, x4, x5, x6) = (0, 5346, 0, 0, 0, 0) to
equation (12). Now the response made by Oscar would be u = (1,−3, 6, 1)T ,
w = (3,−7, 1, 4)T and

H1 =




1 0 5346 0
0 1 0 0
0 0 1 0
0 0 0 −1344


 .

In the verification step, Bob checks that

uT H1w = y = −1189.

For the subroutines, Oscar is able to impersonate Alice in a much simpler
way. For j = 2, Oscar arbitrarily chooses

H2 =




1 5 −2 3
0 3 2 −1
4 2 −1 7
5 9 6 1


 ,

and computes
z2 = vT M2 ·H2 ·M2v = 24.
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In the commit step, Oscar sends z2 to Bob as a witness integer. In the proof
step, Oscar indicates to Bob two vectors u = vT M2 = (0, 5,−1, 2)T and w =
M2v = (−1, 3,−1, 1)T and sends the matrix H2 to Bob. Then Bob checks that

uT H2w = 24.

In a similar way, Oscar is able to successfully impersonate Alice for the subse-
quent subroutines with j = 3, . . . , t.

4. Conclusion

In this paper, we analyzed an identification scheme presented in [1], which
is based on a distributional NP-complete problem. On the contrary to the
claimed soundness property, we showed that a simple impersonation attack is
feasible except with negligible probability.
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