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THE REFLECTIVE FUNCTION REPRESENTED BY
THREE EXPONENTIAL MATRIXES

Zhengxin Zhou

Abstract. In this article, we discuss the reflective function which can
be represented by three exponential matrixes and apply the results to
studying the existence of periodic solutions of these systems. The ob-
tained conclusions extend and improve the foregoing results.

1. Introduction

As we know, to study the property of the solutions of differential system

(1) x′ = X(t, x).

is very important not only for the theory of ordinary differential equation but
also for practical reasons. If X(t+ 2ω, x) = X(t, x) (ω is a positive constant),
to study the solutions’ behavior of (1), we could use, as introduced in [1], the
Poincaré mapping. But it is very difficult to find the Poincaré mapping for
many systems which cannot be integrated in quadratures. In the 1980’s the
Russian mathematician Mironenko [3] first established the theory of reflective
functions (RF). Since then a quite new method to study (1) has been found.

In the present section, we introduce the concept of the reflective function,
which will be used throughout the rest of this article.

Now consider the system (1) with a continuously differentiable right-hand
side and with a general solution ψ(t; t0, x0). For each such system, the reflective
function (RF) of (1) is defined as F (t, x) := ψ(−t; t, x). Then for any solution
x(t) of (1), we have F (t, x(t)) = x(−t). If system (1) is 2ω-periodic with
respect to t, and F is its RF, then F (−ω, x) = ψ(ω;−ω, x) is the Poincaré
[1, 3] mapping of (1) over the period [−ω, ω]. So, for any solution x(t) of (1)
defined on [−ω, ω], it will be 2ω-periodic if and only if x(−ω) is a fixed point
of the Poincaré mapping T (x) = F (−ω, x).
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A function F (t, x) is a reflective function of system (1) if and only if it is a
solution of the partial differential equation

(2) F ′t + F ′xX(t, x) +X(−t, F ) = 0

with the initial condition F (0, x) = x. It implies that for non-integral periodic
systems we also can find out its Poincaré mapping. If, for example, X(t, x) +
X(−t, x) ≡ 0, then T (x) = x.

If F (t, x) is the RF of (1), then it is also the RF of the system

ẋ = X(t, x) + F ′x
−1
R(t, x)−R(−t, F (t, x)),

where R(t, x) is an arbitrary vector function such that the solutions of the above
systems are uniquely determined by their initial conditions. Therefore, all these
2ω-periodic systems have a common Poincaré mapping over the period [−ω, ω],
and the behavior of the periodic solutions of these systems are the same.

See the articles [3, 4, 5, 6, 7, 8, 9] which are also devoted to investigations of
qualitative behavior of solutions of differential systems with help of reflecting
function.

Let system (1) be linear, i.e.,

(3) x′ = P (t)x, t ∈ R, x ∈ Rn,

where P (t) is a continuously differentiable n × n matrix function in R. And
suppose that Φ(t) is the fundamental matrix of solutions of (3). Then the
general solution of (3) is x = ϕ(t; t0, x0) = Φ(t)Φ−1(t)x0. Therefore, the RF of
(3) is F (t, x) = F (t)x, where F (t) = Φ(−t)Φ−1(t). This matrix F (t) is referred
to as a reflective matrix (RM) of system (3).

RM of any system satisfies the relations F (−t)F (t) ≡ F (0) = E, where E
is the n × n unit matrix. Differentiable matrix F (t) is a RM of system (3) if
and only if it is a solution of the system (basic relation)

F ′(t) + F (t)P (t) + P (−t)F (t) = 0

with the initial condition F (0) = E. Any linear system with reflecting matrix
F (t) can be reduced in the form

x′ = [−1
2
F (−t)F ′(t) + F (−t)R(t)−R(−t)F (t)]x,

where R(t) is an arbitrary continuous real matrix.
If matrix P (t) is 2ω-periodic and F (t) is RM of system (3), then for this

system the matrix F (−ω) is the monodromy matrix on the interval [−ω, ω].
Thus solutions µi(i = 1, 2, . . . , n) of the equation det(F (−ω)−µE) = 0 are the
multiplicators of system (3)

As we known, when P (t+2ω) = P (t), the fundamental matrix Φ(t) of (3) can
be represented in the form Φ(t) = Ψ(t)eBt, where Ψ(t) is a continuous periodic
n×nmatrix and detΨ(t) 6= 0, B is a constant n×nmatrix. RM of such systems
is F (t) = Φ(−t)Φ−1(t) = Ψ(−t)e2BtΨ−1(t). With this in mind we suppose that
RM of system (3) is given by F (t) = eA(−t)e2Bte−A(t), where A(t) is a n × n
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matrix function, B is a constant n × n matrix. In the papers of Musafirov
[5, 6], the forms of RM F (t) = eAte2BteAt and F (t) = eα(t)Aeβ(t)Be−α(−t)A

have been discussed. In the following, we will discuss when the RM of system
(3) has the more general form of F (t) = eA(−t)e2Bte−A(t). It will develop the
results of Musafirov [5, 6].

2. Main results

Theorem 1. F (t) = eA(−t)e2Bte−A(t) is the RM of system (3), if and only if

(4) F (t)D(t) +D(−t)F (t) = 0,

(5) B = e−A(0)(A′(0)− P (0))eA(0),

where D(t) = eA(t)Be−A(t) + P (t)−A′(t).

Proof. By the foregoing introduction, we see that F (t) = eA(−t)e2Bte−A(t) is
the RM of (3), if and only if,

F ′(t) + F (t)P (t) + P (−t)F (t) = 0,

simple computing, we get

F (t)(eA(t)Be−A(t)+P (t)−A′(t))+(eA(−t)Be−A(−t)+P (−t)−A′(−t))F (t) = 0,

i.e.,
F (t)D(t) +D(−t)F (t) = 0,

where D(t) = eA(t)Be−A(t) + P (t)−A′(t).
Putting t = 0, we get D(0) = 0 and matrix B. ¤

Theorem 2. F (t) = eA(−t)e2Bte−A(t) is the RM of system (3) if and only if

(6) P (t) = A′(t)− eA(t)Be−A(t) + eA(t)e−BtN(t)eBte−A(t),

where N(t) ia an odd continuously differentiable n × n matrix function, B is
the same as in the relation (5).

Proof. According to Theorem 1, we know F (t) = eA(−t)e2Bte−A(t) is the RM
of system (3), if and only if, F (t)D(t) +D(−t)F (t) = 0, i.e.,

eA(−t)e2Bte−A(t)D(t) +D(−t)eA(−t)e2Bte−A(t) = 0,

which implies

eBte−A(t)D(t)eA(t)e−Bt + e−Bte−A(−t)D(−t)eA(−t)eBt = 0.

Putting N(t) = eBte−A(t)D(t)eA(t)e−Bt, then N(t) + N(−t) = 0, and D =
eA(t)e−BtN(t)eBte−A(t). Thus, P (t) can be expressed by relation (6). ¤
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Corollary 1. If P (t) = A′(t)− eA(t)Be−A(t) + γ(t)E, then

F (t) = eA(−t)e2Bte−A(t)

is the RM of system (3). Here γ(t) is an arbitrary continuously differentiable
scalar function, E is an identity n×n matrix, B is the same as in the relation
(5).

Proof. In Theorem 2, taking N(t) = γ(t)E, this implies the present result. ¤

Corollary 2. If P (t) = (α′(t) + γ(t)− α′(0))E − P (0), then

F (t) = eα(−t)−α(t)e2Bt

is the RM of system (3). Here B = α′(0)E + P (0), E is an identity matrix,
α(t), γ(t) are scalar continuously differentiable functions, odd functions.

Proof. In Corollary 1 taking A(t) = α(t)E, which yields the present result. ¤

Theorem 3. Suppose that P (t + 2ω) = P (t) and F (t) = eA(−t)e2Bte−A(t) is
the RM of system (3), then

1) The Poincaré mapping of (3) is T (x) = F (−ω)x = eA(ω)e−2Bωe−A(−ω)x.
2) The solution x = φ(t,−ω, x0) of (3) is 2ω-periodic if and only if F (−ω)x0 =

x0.
3) If x(t) is an arbitrary solution of (3), then y(t) = eBte−A(t)x(t) is an

even function.

Proof. The conclusions 1 and 2 can be reduced by the properties of reflective
function.

Now we shall prove the conclusion 3 is true. In factor, because F (t) =
eA(−t)e2Bte−A(t) is the RM of (3), then eA(−t)e2Bte−A(t)x(t) = x(−t), i.e.,
e2Bte−A(t)x(t) = e−A(−t)x(−t), and so eBte−A(t)x(t) = e−Bte−A(−t)x(−t),
that is y(t) = y(−t). ¤

Example 1. Differential system

x′ = P (t)x =
(− sin t− 1 + 1

2sh(2 sin t) cos t− ch2(sin t)
cos t+ sh2(sin t) − sin t− 1− 1

2sh(2 sin t)

)
x

has RM F (t) = eA(−t)e2Bte−A(t), in which

A(t) =
(

cos t sin t
sin t cos t

)
, B =

(
2 2
0 2

)
.

It is easy to check that P (t) = A′(t) − eA(t)Be−A(t) is true. Since this
system is 2π-periodic, then the Poincaré mapping is T (x, y) = F (−π)x. In
view of det(F (−π) − E) = (e−2π − 1)2 6= 0, thus, the present system exists
unique 2π-periodic solution which is asymptotically stable.
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Theorem 4. Suppose that

P (t) = A′(t)− eA(t)Be−A(t) +
m∑

k=1

γk(t)Mk(t),

M ′ = P (t)M(t)−M(t)P (t) +
m∑

k=1

βk(t)Mk(t).

Then F (t) = eA(−t)e2Bte−A(t) is the RM of system (3). Here γk(t), βk(t), k =
1, 2, . . . ,m are odd continuously differentiable scalar functions, M(t) is a n×n
matrix function, B = e−A(0)(A′(0)− P (0))eA(0).

Proof. By Theorem 1, to prove that F (t) = eA(−t)e2Bte−A(t) is the RM of
system (3), only need to check out the relation (4) to be hold. Using the
hypothesis of the present theorem, we have D(t) =

∑m
k=1 γk(t)Mk(t). Thus

F (t)D(t) +D(−t)F (t)

=
m∑

k=1

γk(t)(F (t)Mk(t)−Mk(−t)F (t))

=
m∑

k=1

γk(t)
∑

i+j=k−1

M i(−t)(F (t)M(t)−M(−t)F (t))M j(t).

Let denote U = F (t)M(t)−M(−t)F (t). Then U(0) = 0 and

F (t)D(t) +D(−t)F (t)) =
m∑

k=1

γk(t)
∑

i+j=k−1

M i(−t)UM j(t).

Since F (t) = eA(−t)e2Bte−A(t), so F ′(t) = F (t)(S−A′)+(S̄−Ā′)F (t), in which,
S = S(t) = eA(t)Be−A(t), S̄ = S(−t), A = A(t), Ā = A(−t). Therefore,

U ′ = F (t)(M ′(t) + SM −A′M)− (M̄Ā′ + M̄S̄ + M̄ ′)F (t)

+ (Ā′ + S̄)FM − M̄F (S −A′)

= F (PM −MP + (S −A′)M +
m∑

k=1

βk(t)Mk)

+ (P̄ M̄ − M̄P̄ − M̄(Ā′ + S̄) +
m∑

k=1

βk(t)Mk)F

= − P̄U − UP +
m∑

k=1

βk(t)
∑

i+j=k−1

M̄ iUM j

+
m∑

k=1

γk(t)
∑

i+j=k−1

M̄ iUM j+1 −
m∑

k=1

γk

∑

i+j=k−1

M̄ i+1UM j .
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By the uniqueness of solution of the initial problem of the linear partial differ-
ential equation, this implies U(t) ≡ 0. Thus,

F (t)D(t) +D(−t)F (t) =
m∑

k=1

γk(t)
∑

i+j=k−1

M̄ iUM j = 0,

By Theorem 1, F (t) = eA(−t)e2Bte−A(t) is the RM of system 3. ¤

Theorem 5. Suppose that F (t) = eA(−t)e2Bte−A(t) is the RM of system (3).
Then

P ′′(0)−A(3)(0) +A′′(0)A′(0)−A′(0)A′′(0) + 2A′(0)P (0)A′(0)

+P (0)(3A′′(0)−A′2(0)− 2P ′(0) + 2A′(0)P (0)− 2P (0)A′(0))(7)

+(2P ′(0)− 3A′′(0)−A′2(0)− 2A′(0)P (0) + 2P (0)A′(0))P (0) = 0,

and
B = e−A(0)(A′(0)− P (0))eA(0).

Proof. By Theorem 1, we have F (t)D(t) + D(−t)F (t) = 0. Setting t = 0, we
obtain matrix B. Twice differentiating relation F (t)D(t)+D(−t)F (t) = 0, and
setting t = 0, we get

(8) D′′(0) + 2D′(0)P (0)− 2P (0)D′(0) = 0.

Since D(t) = eA(t)Be−A(t) + P (t) − A′(t), then D′(0) = P ′(0) − A′′(0) −
A′(0)P (0) + P (0)A′(0), D′′(0) = P ′′(0)−A′′′(0) +A′′(0)A′(0)−A′(0)A′′(0)−
(A′′(0 +A′2(0)))P (0) + P (0)(A′′(0)−A′2(0)) + 2A′(0)P (0)A′(0). Substituting
these into (8), it implies the identity (7). ¤

Remark 1. Suppose that F (t) = eA(−t)e2Bte−A(t) is the RM of system (3) and
A(t) +A(−t) = 0. Then

P ′′(0)−A(3)(0) + 2A′(0)P (0)A′(0) + P (0)(−A′2(0)

− 2P ′(0) + 2A′(0)P (0)− 2P (0)A′(0))

+ (2P ′(0)−A′2(0)− 2A′(0)P (0) + 2P (0)A′(0))P (0) = 0,

and
B = A′(0)− P (0).

Remark 2. Suppose that F (t) = eA(−t)e2Bte−A(t) is the RM of system (3) and
A(t) = At. Then

P ′′(0) + 2AP (0)A+ P (0)(−A2 − 2P ′(0) + 2AP (0)− 2P (0)A)

+ (2P ′(0)−A2 − 2AP (0) + 2P (0)A)P (0) = 0,

and
B = A− P (0).
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Remark 3. Suppose that F (t) = eA(−t)e2Bte−A(t) is the RM of system (3) and
A(t) = A(−t). Then

P ′′(0) + P (0)(3A′′(0)− 2P ′(0)) + (2P ′(0)− 3A′′(0))P (0) = 0,

and
B = −e−A(0)P (0)eA(0).

Theorem 6. Suppose that F (t) = e−A(t)e2Bte−A(t) is the RM of system (3)
and A(t) + A(−t) = 0. Then there exists an odd n × n function matrix N(t)
such that

eA(t)(P (t)− P (−t))eA(t)(9)

= Be2A(t) − e2A(t)B + e2A(t)e−BtN(t)eBt + eBtN(t)e−Bte2A(t),

where B = A′(0)− P (0), A′(0)P (0)− P (0)A′(0) = P ′(0)−N ′(0).

Proof. Using Theorem 2, there exists an odd n× n function matrix N(t) such
that

(10) P (t) = A′(t)− eA(t)Be−A(t) + eA(t)e−BtN(t)eBte−A(t),

so

(11) P (−t) = A′(t)− e−A(t)BeA(t) − e−A(t)eBtN(t)e−BteA(t),

(10)-(11) yields the identity (9).
Since A(t) + A(−t) = 0, then A(0) = A′′(0) = 0. Differentiating (10) and

setting t = 0 we get A′(0)P (0)− P (0)A′(0) = P ′(0)−N ′(0). ¤

Remark 4. Solving equation A′(0)P (0)−P (0)A′(0) = P ′(0)−N ′(0) we obtain
A′(0), solving

eA(t)(P (t)− P (−t))eA(t)

= Be2A(t) − e2A(t)B + e2A(t)e−BtN(t)eBt + eBtN(t)e−Bte2A(t),

we obtain eA(t). If eA(t) satisfies

(eA(t))′ = P (t)eA(t) + eA(t)B − eA(t)e−BtN(t)eBt,

in which B = A′(0)−P (0), then F (t) = e−A(t)e2Bte−A(t) is the RM of system
(3).

In the similar way we have

Theorem 7. Suppose that F (t) = eA(t)e2Bte−A(t) is the RM of system (3)
and A(t) = A(−t). Then there exists an odd n× n function matrix N(t) such
that

(12) (P (t) + P (−t))eA(t) + 2eA(t)B = eA(t)(e−BtN(t)eBt − eBtN(t)e−Bt),

where B = −e−A(0)P (0)eA(0), A′′(0) + eA(0)N ′(0)e−A(0) = P ′(0), P ′′(0) =
(3A′′(0)− 2P ′(0))P (0)− P (0)(3A′′(0)− 2P ′(0)).
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Remark 5. Solving equation

(P (t) + P (−t))eA(t) + 2eA(t)B = eA(t)(e−BtN(t)eBt − eBtN(t)e−Bt)

we obtain eA(t), then we get B = −e−A(0)P (0)eA(0). If eA(t) satisfies

(eA(t))′ = P (t)eA(t) + eA(t)B − eA(t)e−BtN(t)eBt,

then F (t) = eA(t)e2Bte−A(t) is the RM of system (3).

Using the Theorem 1 in [4, p.1397], we obtain

Theorem 8. Suppose that the vector function ∆(t, x) satisfies identity

∆′(t, x)t + ∆′(t, x)xP (t)x = P (t)∆(t, x)

and F (t)x = eA(t)e2Bte−A(t)x is the RF of system (3), α(t) is an arbitrary odd
continuously differentiable scalar function. Then F (t)x = eA(t)e2Bte−A(t)x is
also RF of nonlinear differential system

(13) x = P (t)x+ α(t)∆(t, x).

Besides this, if system (13) is 2ω-periodic, then the properties of periodic solu-
tion of (13) are the same as the periodic solutions of system (3).

Consider the nonlinear differential system with small parameter ε

(14) x′ = F (t, x, ε), t ∈ R, x ∈ D ⊂ Rn,

where F is a continuous 2ω-periodic vector function for all t, and also contin-
uously differentiable with respect to components of a vector x, ε is small. Let
x = ϕ(t) be a 2ω-periodic solution of the system (14) when ε = 0.

Theorem 9. Let F (t) = eA(t)e2Bte−A(t) be the RM of system (3) with matrix

P (t) =
∂F

∂x
(t, ϕ(t), 0).

If there is no unit among solutions µi of equation

det(eA(−ω)e−2Bωe−A(−ω) − µE) = 0,

then system (14) with sufficiently small |ε| has the unique 2ω-periodic solution
x = x(t, ε) with an initial point x(0, ε) close to ϕ(t). Besides, x(t, ε) is a
continuous function with respect to (t, ε), and x(t, 0) = ϕ(t). If, moreover, F
is continuously differentiable with respect to ε, then x(t, ε) is also continuously
differentiable.

Proof. Since multiplicators µi for 2ω-periodic linear system with the RM

F (t) = eA(t)e2Bte−A(t)

are solutions of equation

det(eA(−ω)e−2Bωe−A(−ω) − µE) = 0,

therefore validity of this theorem follows from the Theorem 2.3 in [2, p.488]. ¤
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