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CHARACTERIZATIONS OF REAL HYPERSURFACES OF
TYPE A IN A COMPLEX SPACE FORM

U-Hang Ki, In-Bae Kim, and Dong Ho Lim

Abstract. Let M be a real hypersurface with almost contact metric
structure (φ, g, ξ, η) in a complex space form Mn(c), c 6= 0. In this paper
we prove that if RξLξg = 0 holds on M , then M is a Hopf hypersurface
in Mn(c), where Rξ and Lξ denote the structure Jacobi operator and the
operator of the Lie derivative with respect to the structure vector field ξ
respectively. We characterize such Hopf hypersurfaces of Mn(c).

1. Introduction

A complex n-dimensional Kaeherian manifold of constant holomorphic sec-
tional curvature c is called a complex space form, which is denoted by Mn(c).
As is well-known, a complete and simply connected complex space form is
complex analytically isometric to a complex projective space Pn(C), a complex
Euclidean space Cn or a complex hyperbolic space Hn(C), according to c > 0,
c = 0 or c < 0.

In this paper we consider a real hypersurface M in a complex space form
Mn(c), c 6= 0. Then M has an almost contact metric structure (φ, g, ξ, η)
induced from the Kaehler metric and complex structure J on Mn(c). The
structure vector field ξ is said to be principal if Aξ = αξ is satisfied, where A
is the shape operator of M and α = η(Aξ). In this case, it is known that α is
locally constant ([3]) and that M is called a Hopf hypersurface.

Typical examples of Hopf hypersurfaces in Pn(C) are homogeneous ones,
namely those real hypersurfaces are given as orbits under subgroup of the pro-
jective unitary group PU(n + 1). Takagi [8] completely classified such hyper-
surfaces as six model spaces which are said to be A1, A2, B, C, D and E. On
the other hand, real hypersurfaces in Hn(C) have been investigated by Berndt
[1], Montiel and Romero [4] and so on. Berndt [1] classified all homogeneous
Hopf hyersurfaces in Hn(C) as four model spaces which are said to be A0, A1,
A2 and B.
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We introduce the following theorems without proof due to Okumura [6] for
c > 0, and Montiel and Romero [4] for c < 0 respectively.

Theorem O-MR ([4], [6]). Let M be a real hypersurface of Mn(c), c 6= 0.
It satisfies Aφ− φA = 0 on M if and only if M is locally congruent to one of
the following hypersurfaces:

(1) In cases Pn(C),

(A1) a tube of radius r over a hyperplane Pn−1(C), where 0 < r < π
2 , r 6= π

4 ,
(A2) a tube of radius r over a totally geodesic Pk(C) (1 ≤ k ≤ n− 2), where

0 < r < π
2 , r 6= π

4 .

(2) In cases Hn(C),

(A0) a horosphere in Hn(C), that is, a Montiel tube,
(A1) a tube of a totally geodesic hyperplane Hk(C) (k = 1 or n− 1),
(A2) a tube of a totally geodesic Hk(C) (1 ≤ k ≤ n− 2).

Let M be a real hypersurface of type (A1) or (A2) in Pn(C) or type (A0),
(A1) or (A2) in Hn(C). Then M is said to be of type (A) for simplicity.

The curvature tensor field R on a Riemannian manifold (M, g) is defined by

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

for any vector fields X and Y on (M, g). We define the Jacobi operator RX by
RX = R(·, X)X with respect to a unit vector field X. Then we see that RX is
self-adjoint endomorphism of the tangent space. It is related with (the Jacobi
vector equation) ∇γ̇(∇γ̇Y ) + R(Y, γ̇)γ̇ = 0 along a geodesic γ on M , where γ̇
denotes the velocity vector field of γ.

When we study a real hypersurface M in a complex space form, we will call
the Jacobi operator Rξ with respect to the structure vector field ξ a structure
Jacobi operator on the real hypersurface M . Recently it is known that there are
no real hypersurfaces in Mn(c) with parallel structure Jacobi operator Rξ (see
[7]). Some works have also studied several conditions on the structure Jacobi
operator Rξ and given some results on the classification of real hypersurfaces
of type (A) in Mn(c) ([2], [4], [5] and [6] etc).

The induced operator on a real hypersurface M from the 2-form Lξg will
be denoted by the same symbol, that is, (Lξg)(X, Y ) = g((Lξg)X, Y ) for any
vector fields X and Y on M , where Lξ denotes the operator of the Lie derivative
with respect to the structure vector field ξ. In this paper we shall study a real
hypersurface in a non-flat complex space form Mn(c) which satisfies RξLξg = 0.
We give another characterization of real hypersurface of type (A) in Mn(c) by
the above condition. The main purpose of the present paper is to establish
Theorem 5.1.

All manifolds in the present paper are assumed to be connected and of class
C∞ and the real hypersurfaces supposed to be orientable.
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2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c),
and N be a unit normal vector field of M . By ∇̃ we denote the Levi-Civita
connection with respect to the Fubini-Study metric tensor g̃ of Mn(c). Then
the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + g(AX, Y )N, ∇̃XN = −AX

for any vector fields X and Y on M , where g denotes the Riemannian metric
tensor of M induced from g̃, and A is the shape operator of M in Mn(c). For
any vector field X on M we put

JX = φX + η(X)N, JN = −ξ,

where J is the almost complex structure of Mn(c). Then we see that M induces
an almost contact metric structure (φ, g, ξ, η), that is,

φ2X = −X + η(X)ξ, φξ = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

for any vector fields X and Y on M .
Since the almost complex structure J is parallel, we can verify from the

Gauss and Weingarten formulas the followings:

(2.1) ∇Xξ = φAX,

(2.2) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ.

Since the ambient manifold is of constant holomorphic sectional curvature
c, we have the following Gauss and Codazzi equations respectively:

(2.3)
R(X, Y )Z =

c

4
{g(Y, Z)X − g(X, Z)Y + g(φY,Z)φX − g(φX, Z)φY

− 2g(φX, Y )φZ}+ g(AY, Z)AX − g(AX, Z)AY,

(2.4) (∇XA)Y − (∇Y A)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}

for any vector fields X, Y and Z on M , where R denotes the Riemannian
curvature tensor of M .

From the Gauss equation (2.3) the structure Jacobi operator Rξ is given by

(2.5) RξX = R(X, ξ)ξ =
c

4
{X − η(X)ξ}+ αAX − η(AX)Aξ

for any vector field X on M .
Let W be a unit vector field on M with the same direction of the vector

field −φ∇ξξ, and let µ be the length of the vector field −φ∇ξξ if it does not
vanish, and zero (constant function) if it vanishes. Then it is easily seen from
(2.1) that

(2.6) Aξ = αξ + µW,
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where α = η(Aξ). We notice here that W is orthogonal to ξ. We put

Ω = {p ∈ M | µ(p) 6= 0}.
Then Ω is an open subset of M . If we put X = W into (2.5) and make use of
(2.6), then we have on Ω

(2.7) RξW = −αµξ + (
c

4
− µ2)W + αAW.

In what follows we assume that Ω 6= ∅, that is, the structure vector field ξ
is not principal, and we discuss our arguments on Ω unless otherwise stated.

3. Real hypersurfaces satisfying RξLξg = 0

Let M be a real hypersurface in a complex space form Mn(c), c 6= 0, satis-
fying RξLξg = 0. This condition together with (2.1) implies that

(3.1) Rξ(φA−Aφ) = 0

or equivalently

(3.2) (φA−Aφ)Rξ = 0.

If we apply ξ to (3.1) and make use of (2.5) and (2.6), then it is easy to see
that α 6= 0 and hence

(3.3) AφW = − c

4α
φW

on Ω. Applying W to (3.1) and taking account of (2.5), (2.6) and (3.3), we
have

αAφAW +
c

4
φAW = 0.

The application of W to (3.2) gives rise to

α2AφAW − α2φA2W − α(
c

4
− µ2)φAW − (

c2

16
− c

4
µ2 − α2µ2)φW = 0

by virtue of (2.6), (2.7) and (3.3). From the above two equations, we get

(3.4)
α2A2W + α(

c

2
− µ2)AW − αµ(

c

2
+ αγ + α2 − µ2)ξ

+ (
c2

16
− c

4
µ2 − α2µ2)W = 0,

where we have put
γ = g(AW,W ).

Applying φW to (3.1) and using (2.5), (2.6), (2.7) and (3.3), we have

(3.5)
α2A2W +

c

2
αAW − αµ(

c

2
+ αγ + α2)ξ

+ (
c2

16
− c

4
µ2 − α2µ2 − αγµ2)W = 0.

It is easily seen from (3.4) and (3.5) that

(3.6) AW = µξ + γW
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on Ω. If we substitute (3.6) into (3.5) and make use of (2.6) and (3.6), then we
obtain

(3.7) (
c

4
+ αγ)(

c

4
+ αγ − µ2) = 0.

Applying φX to (3.1) and using (2.5), (2.6), (3.3) and (3.6), we can verify
that

(3.8)

α2AφAφX +
c

4
αφAφX + α2A2X +

c

4
αAX

= α{α(
c

4
+ α2 + µ2)η(X) + µ(

c

2
+ αγ + α2)w(X)}ξ

+ µ(
c

4
+ αγ + α2){αη(X) + µw(X)}W

for any vector field X on M , where the 1-form w is the dual one of W , that is,

w(X) = g(W,X).

Differentiating the smooth function µ = g(Aξ, W ) along any vector field X
on M and using (2.1), (2.4), (2.6), (3.3) and (3.6), we have

Xµ = g((∇ξA)W +
c

4α
γφW,X).

Since we have (∇ξA)W = ∇ξ(µξ + γW ) − A∇ξW , we see from the above
equation that the gradient vector field ∇µ of µ is given by

(3.9) ∇µ = −(A− γI)∇ξW + (ξµ)ξ + (ξγ)W + (µ2 +
c

4α
γ)φW,

where I indicates the identity transformation on M . If we differentiate α =
g(Aξ, ξ) along any vector field X and take account of (2.1), (2.4), (2.6), (3.3)
and (3.6), then we obtain ∇α = (∇ξA)ξ + c

2αµφW and hence

(3.10) ∇α = µ∇ξW + (ξα)ξ + (ξµ)W + µ(
3c

4α
+ α)φW.

As a similar argument as the above, we can see that the gradient vector fields
of γ = g(AW,W ) and − c

4α = g(AφW,φW ) are given respectively by

(3.11) ∇γ = −(A− γI)∇W W + (Wµ)ξ + (Wγ)W + µ(γ − c

2α
)φW

and

(3.12)
c

4α
∇α = −α(A +

c

4α
I)φ∇φW W +

c

4α
((φW )α)φW.

Taking inner product of (3.12) with ξ and W and using (2.6) and (3.6), we
obtain

4α2µg(∇φW W,φW ) = cξα, α(4αγ + c)g(∇φW W,φW ) = cWα

respectively. The above two relations imply that

(3.13) αµWα = (
c

4
+ αγ)ξα.
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By means of (2.1), (2.2), (2.6), (3.3) and (3.6), we can verify that

(∇φW A)ξ = ∇φW Aξ −A∇φW ξ

= µ∇φW W + {(φW )α− c

4α
µ}ξ + {(φW )µ +

c

4
− c

4α
γ}W

and

(∇ξA)φW = −(A +
c

4α
I)φ∇ξW + µ(

c

4α
+ α)ξ + µ2W +

c

4α2
(ξα)φW.

Therefore it follows from the equation (2.4) of Codazzi that
(3.14)

µ∇φW W + (A +
c

4α
I)φ∇ξW

=− {(φW )α− µ(
c

2α
+ α)}ξ − {(φW )µ− µ2 − c

4α
γ}W +

c

4α2
(ξα)φW.

We can also verify from (∇ξA)W − (∇W A)ξ that

µ∇W W + (A− γI)∇ξW

= (ξµ−Wα)ξ + (ξγ −Wµ)W + (µ2 − c

4
− αγ − c

4α
γ)φW.

Taking inner product of this equation with ξ and W , we find

(3.15) ξµ = Wα and ξγ = Wµ

respectively, and hence the initial equation is reduced to

(3.16) µ∇W W + (A− γI)∇ξW = (µ2 − c

4
− αγ − c

4α
γ)φW.

As a similar argument as the above, it follows from (∇W A)φW − (∇φW A)W
that
(3.17)

(A− γI)∇φW W − (A +
c

4α
I)φ∇W W

= {(φW )µ− c

2
− αγ − c

4α
γ}ξ + {(φW )γ − µγ +

c

4α
µ}W − c

4α2
(Wα)φW.

If we eliminate the term (A−γI)∇ξW from (3.9) and (3.16), then we obtain

(3.18) µ∇W W = ∇µ− (ξµ)ξ − (ξγ)W − (
c

4
+ αγ +

c

2α
γ)φW.

Substituting (3.18) into (3.11) and making use of (2.6), (3.3), (3.6) and (3.15),
we get

(3.19)

(A− γI)∇µ + µ∇γ

= {(α− γ)ξµ + 2µξγ}ξ + µ(ξµ + Wγ)W

+ {µ2(γ − c

2α
)− (

c

4α
+ γ)(

c

4
+ αγ +

c

2α
γ)}φW.



CHARACTERIZATIONS OF REAL HYPERSURFACES 7

If we compare (3.9) with (3.10), then we can find

(3.20)

(A− γI)∇α + µ∇µ

= {(α− γ)ξα + 2µξµ}ξ + µ(ξα + ξγ)W

+ µ{µ2 +
c

4α
γ − (

c

4α
+ γ)(

3c

4α
+ α)}φW

by eliminating ∇ξW in both (3.9) and (3.10).
If we eliminate the term ∇φW W from (3.12) and (3.14), and make use of

(2.6), (3.3) and (3.6), then we obtain
c

4α2
µ∇α = (Aφ +

c

4α
φ)2∇ξW +

c

4α2
µ(ξα)ξ

+
c

4α2
(

c

4α
+ γ)(ξα)W +

c

4α2
µ((φW )α)φW.

Since φ2 = −I + η ⊗ ξ and η(∇ξW ) = 0, it is easily seen that

(Aφ +
c

4α
φ)2∇ξW =

1
α
{αAφAφ +

c

4
φAφ− c

4
(A +

c

4α
I)}∇ξW.

Putting X = ∇ξW into (3.8), it is easy to see that

(αAφAφ +
c

4
φAφ)∇ξW = −(αA2 +

c

4
A)∇ξW.

From the above results we have (Aφ + c
4αφ)2∇ξW = −(A + c

4αI)2∇ξW , and
hence the initial equation is given by

c

4α2
µ∇α = − (A +

c

4α
I)2∇ξW +

c

4α2
µ(ξα)ξ

+
c

4α2
(

c

4α
+ γ)(ξα)W +

c

4α2
µ((φW )α)φW.

Finally, if we eliminate the term ∇ξW from (3.10) and the last equation, and
take account of (2.6), (3.3) and (3.6), then we obtain
(3.21)

{α2A2 +
c

2
αA +

c

4
(
c

4
+ µ2)I}∇α

= {[α2(
c

2
+ α2 + µ2) +

c

4
(
c

4
+ µ2)]ξα + αµ(

c

2
+ αγ + α2)ξµ}ξ

+ {µ[α(
c

2
+ αγ + α2) +

c

4
(

c

4α
+ γ)]ξα + [α2(µ2 + γ2) +

c

2
αγ +

c2

16
]ξµ}W

+
c

4
µ2((φW )α)φW.

4. Some lemmas

Let M be a real hypersurface satisfying RξLξg = 0 in a complex space form
Mn(c), c 6= 0. In this section we assume that Ω 6= ∅, and we shall prove some
lemmas, which will be used later.
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Lemma 4.1. If c
4 + αγ = µ2 holds on a non-empty open subset Ω0 of Ω, then

we have

(4.1) α∇α = (ξα)Aξ − 3µ(α2 − c

4
)φW

on Ω0.

Proof. It follows from (3.13) and the hypothesis that

(4.2) µξα = αWα

on Ω0. Since we have α∇γ + γ∇α = 2µ∇µ, it is easily seen from (3.15) and
(4.2) that

(4.3) α2Wµ = (µ2 +
c

4
)ξα.

If we substitute 2µ∇µ = α∇γ + γ∇α into (3.19) and make use of the hy-
pothesis, then we have

(4.4)
{αA + (

c

4
+ µ2)I}∇γ + γ(A− γI)∇α

= 2µ{(α− γ)ξµ + 2µξγ}ξ + 2µ2(ξµ + Wγ)W − c

2α2
µ3(3α + 2γ)φW.

Taking inner product of (4.4) with φW and using (3.3), we obtain

(4.5) α(φW )γ − γ(φW )α = − c

2α
µ(3α + 2γ).

If we substitute α∇γ + γ∇α = 2µ∇µ into (3.20), then we have

(4.6)
(2A− γI)∇α + α∇γ

= 2{(α− γ)ξα + 2µξµ}ξ + 2µ(ξα + ξγ)W − c

α2
µ(µ2 +

c

8
)φW.

Taking inner product of (4.6) with φW and using (3.3), we get

(4.7) α(µ2 +
c

4
)(φW )α− α3(φW )γ = cµ(µ2 +

c

8
).

It follows from (4.5) and (4.7) that

(4.8) α(φW )α = −3µ(α2 − c

4
).

From (2.6), (3.3) and (3.6), we see that the subspace spanned by the three
vectors ξ, W and φW is invariant under the shape operator A. Thus eliminating
the gradient vector field ∇γ from (4.4) and (4.6), we can find

{α2A2 +
c

2
αA− c

4
(µ2 − c

4
)I}∇α = xξ + yW + zφW,

where x, y and z are smooth functions on Ω0. If we compare (3.21) with the
above relation, then it is easy to see that the gradient vector field ∇α of α
is expressed by a linear combination of ξ, W and φW only. Therefore, using
(2.6), (4.2) and (4.8), we have (4.1). ¤
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Lemma 4.2. If c
4 + αγ = 0 holds on a non-empty open subset of Ω, then we

have

(4.9) ∇α = (ξα)ξ − 3αµφW

on the open subset.

Proof. It follows from (3.13) and (3.15) that Wα = 0 and ξµ = 0. From the
hypothesis, Wα = 0 gives rise to Wγ = 0 on the open subset. We see from
(3.3) that AφW = γφW .

Using the equation α∇γ + γ∇α = 0 and the above results, the equations
(3.19) and (3.20) are rewritten as

(4.10) α(A− γI)∇µ− µγ∇α = −2µγ(ξα)ξ − 3
4
cµ2φW,

(4.11)
(A− γI)2∇α + µ(A− γI)∇µ

= {(α2 + µ2 + γ2 +
c

2
)ξα + µ2ξγ}ξ + µ(α− γ)(ξα)W

respectively. If we eliminate the term (A− γI)∇µ from (4.10) and (4.11), then
we obtain
(4.12)

{α2A2 +
c

2
αA +

c

4
(
c

4
− µ2)I}∇α

= {α2(α2 + µ2 +
c

2
) +

c

4
(
c

4
− µ2)}(ξα)ξ + αµ(α2 +

c

4
)(ξα)W +

3
4
cαµ3φW,

where we have used α∇γ + γ∇α = 0. Comparing (3.21) with (4.12) and using
ξµ = 0, we get

∇α = (ξα)ξ +
1
2
{(φW )α− 3αµ}φW,

from which (φW )α = −3αµ. Thus we have (4.9). ¤

Lemma 4.3. We have ξα = ξµ = ξγ = 0 and Wα = Wµ = Wγ = 0 on Ω.

Proof. First of all, we assume that there is a point p of Ω such that (Wα)(p) 6=
0. Then there is an open neighborhood Ω1 of p in Ω such that ξα 6= 0 and
c
4 + αγ 6= 0 on Ω1 by (3.13). This means that

c

4
+ αγ = µ2

holds on Ω1 by (3.7). Therefore, from Lemma 4.1 and in the proof of this
lemma, we see that the equations (4.1), (4.2), (4.3) and (4.8) are satisfied on
Ω1.

If we compare (4.1) with (3.10) and take account of (3.15) and (4.2), then
we obtain

(4.13) ∇ξW = −4αφW.
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Moreover, substituting (4.13) into (3.14) and using (3.6) and (4.8), we get

(4.14) µ∇φW W = − c

4α
µξ +

c

4α2
(ξα)φW.

Let v be the dual 1-form of the unit vector field φW , that is,

v(X) = g(φW,X)

for any vector field X on M . Then it follows from (4.1) that

(4.15) Xα2 = 2(ξα)η(AX)− 6µ(α2 − c

4
)v(X).

Since we have [X, Y ]α2 = XY α2 − Y Xα2, we can verify from (4.15) that
(4.16)

(Xξα)η(AY )− (Y ξα)η(AX) + 2(ξα)g(AφAX, Y )− c

2
(ξα)g(φX, Y )

− 3(α2 − c

4
){(Xµ)v(Y )− (Y µ)v(X)} − 6αµ{(Xα)v(Y )− (Y α)v(X)}

− 6µ(α2 − c

4
)dv(X, Y ) = 0

by virtue of the equations (2.1) and (2.4), where

2dv(X, Y ) = Xv(Y )− Y v(X)− v([X,Y ])

for any vector fields X and Y on M . Since we have αξµ = µξα by (3.15) and
(4.2), and dv(ξ, φW ) = 0 by (2.1) and (3.3), putting X = φW and Y = ξ into
(4.16) yields

(4.17) (φW )(ξα) = µ(
c

4α2
− 9)ξα.

If we put X = φW and Y = W into (4.16) and make use of (4.1), (4.2), (4.3),
(4.14) and (4.17), then we obtain

(ξα)(α2 − c

4
) = 0

on Ω1. Since ξα 6= 0 by (3.13) and our assumption, this result shows that α is
a constant on Ω1, and a contradiction.

Thus we have Wα = 0 on the whole Ω. Since Wα = 0 on Ω, we have ξµ = 0
by (3.15) and

(
c

4
+ αγ)ξα = 0

on Ω by (3.13).
Next we assume that there is a non-empty open subset Ω2 of Ω such that

ξα 6= 0 on Ω2. Then we have
c

4
+ αγ = 0,
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and hence (4.9) holds on Ω2 by Lemma 4.2. If we make use of the relation
[X,Y ]α = XY α− Y Xα, then it is easy to verify from (4.9) that

(Xξα)η(Y )− (Y ξα)η(X) + (ξα)g((φA + Aφ)X, Y )

− 3µ{(Xα)v(Y )− (Y α)v(X)} − 3α{(Xµ)v(Y )− (Y µ)v(X)}
− 6αµdv(X, Y ) = 0

for any vector fields X and Y on M . Since we see that Wα = 0, AφW = γφW
by (3.3), 2dv(W,φW ) = g(∇φW W,φW ) and αWµ = −γξα by (3.15) and
αξγ + γξα = 0, putting X = W and Y = φW into the above equation yields

(4.18) 5γξα = 3αµg(∇φW W,φW ).

If we take inner product of (3.12) with ξ and make use of (2.6) and c
4α = −γ,

then we obtain

(4.19) γξα = −αµg(∇φW W,φW ).

Combining (4.18) with (4.19), we have γξα = 0 on Ω2 and a contradiction.
Therefore ξα = 0 on the whole Ω. It follows from (3.7) that

µ(
c

2
+ αγ)∇µ = (

c

2
+ αγ − µ2)(γ∇α + α∇γ).

Since ξα = 0 and ξµ = 0 on Ω, the above equation shows that ξγ = 0. Since
ξγ = 0 on Ω, we have Wµ = 0 by (3.15). Together with Wα = 0, the above
equation also gives rise to Wγ = 0 on Ω. ¤

Lemma 4.4. If it satisfies dv(ξ, X) = 0 for any vector field X on Ω, then we
have Ω = ∅.
Proof. By use of (2.2), (2.6) and (3.6), it is easily seen from v(X) = g(φW,X)
that dv(ξ, X) = 0 is equivalent to

(4.20) ∇ξW = γφW.

If we compare (3.16) with (4.20) and take account of (3.3), then we obtain

(4.21) µ∇W W = (µ2 + γ2 − c

4
− αγ)φW.

Assume that there is a point p in Ω such that c
4 + αγ 6= 0 at p. Then it

follows from (3.7) that

(4.22)
c

4
+ αγ = µ2

on an open neighborhood of p. By Lemmas 4.1 and 4.3, we have

(4.23) α∇α = −3µ(α2 − c

4
)φW

on the open neighborhood. Substituting (4.20) into (3.9) and making use of
(4.22) and Lemma 4.3, we obtain

α∇α = µ(α2 + µ2 +
c

2
)φW,
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from which together with (4.23),

(4.24) 4α2 + µ2 =
c

4
.

It follows from (4.22) and (4.24) that

(4.25) 4α + γ = 0.

If we substitute (4.21) into (3.11) and taking account of (3.3), (4.22), (4.24),
(4.25) and Lemma 4.3, then we get

(4.26) α∇γ = µ(12α2 − c

2
)φW.

Since we have 4∇α +∇γ = 0 from (4.25), we can verify that c = 0 from (4.23)
and (4.26), and a contradiction.

Thus we have c
4 + αγ = 0 on the whole Ω. By Lemmas 4.2 and 4.3, we have

(4.27) ∇α = −3αµφW.

Substituting (4.20) into (3.10) and using Lemma 4.3, we obtain

(4.28) α∇α = µ(α2 +
c

2
).

It follows from (4.27) and (4.28) that α2 + c
8 = 0 and hence ∇α = 0. Thus

from (4.27) we have αµ = 0 on Ω and hence a contradiction. ¤

Lemma 4.5. If there is a smooth function f on Ω such that

(4.29) fφW = f1∇α + f2∇µ + f3∇γ,

then f vanishes identically on Ω, where f1, f2 and f3 are the polynomials with
respect to α, µ and γ respectively.

Proof. Taking inner product of (4.29) with any vector field X on M , we have
fv(X) = f1Xα + f2Xµ + f3Xγ. If we differentiate this equation along any
vector field Y on M and take the skew-symmetric parts in X and Y , then we
obtain

(Y f)v(X)− (Xf)v(Y )− 2fdv(X, Y )

= (Y f1)Xα− (Xf1)Y α + (Y f2)Xµ− (Xf2)Y µ + (Y f3)Xγ − (Xf3)Y γ

on Ω. Putting Y = ξ into the above equation and using Lemma 4.3, we get

(ξf)v(X) + 2fdv(ξ,X) = 0.

Since v(φW ) = 1 and dv(ξ, φW ) = 0 by (2.1) and (3.3), we see from the above
equation that ξf = 0 and hence fdv(ξ, X) = 0 for any vector field X. Thus we
have f = 0 on Ω by Lemma 4.4. ¤
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5. Proof of theorems

In this section, we shall prove the following theorems.

Theorem 5.1. Let M be a real hypersurface satisfying RξLξg = 0 in a complex
space form Mn(c), c 6= 0. Then M is a Hopf hypersurface in Mn(c).

Proof. We assume that Ω = {p ∈ M | µ(p) 6= 0} is not empty. Then, by (3.7),
we see that there is a non-empty open subset of Ω such that either c

4 +αγ = µ2

or c
4 + αγ = 0 on the open subset.
In the case where c

4 + αγ = 0, it follows from Lemmas 4.2 and 4.3 that

∇α = −3αµφW.

By Lemma 4.5, we see that αµ = 0 and hence it is a contradiction.
Thus we have c

4 + αγ = µ2 on the whole Ω. By Lemmas 4.1 and 4.3, the
gradient vector field ∇α of α is given by

α∇α = −3µ(α2 − c

4
)φW.

By Lemma 4.5, the above equation implies that

(5.1) α2 =
c

4
on Ω. Since ∇α = 0 by (5.1), it follows from (3.20) and Lemma 4.3 that

∇µ = {µ2 +
c

4α
γ − (

c

4α
+ γ)(

3c

4α
+ α)}φW.

From the above equation and Lemma 4.5, it is easy to see that µ is a constant
and

(5.2) µ2 = − c

8
on Ω by virtue of c

4 + αγ = µ2. Since (5.1) and (5.2) give a contradiction, the
set Ω must be empty. Thus M is a Hopf hypersurface. ¤
Theorem 5.2. Let M be a real hypersurface in a complex space form Mn(c),
c 6= 0. Then it satisfies RξLξg = 0 on M if and only if M is locally congruent
to one of the model spaces of type (A).

Proof. Let M satisfies RξLξg = 0. Then M is a Hopf hypersurface by The-
orem 5.1, that is, Aξ = αξ. Therefore our assumption Rξ(φA − Aφ) = 0 or
equivalently (φA−Aφ)Rξ = 0 are given by

(5.3) αAφA− αA2φ +
c

4
(φA−Aφ) = 0,

(5.4) αAφA− αφA2 − c

4
(φA−Aφ) = 0.

On the other hand, if we differentiate Aξ = αξ covariantly and make use of the
equation (2,4) of Codazzi, then we have

(5.5) AφA− α

2
(φA + Aφ)− c

4
φ = 0.
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Let X be any vector field on M such that AX = λX. Then it follows from
(5.4) that

(5.6) (αλ +
c

4
)AφX = λ(αλ +

c

4
)φX.

From (5.5) we also obtain

(5.7) (λ− α

2
)AφX =

1
2
(αλ +

c

2
)φX.

Assume that there is a point p of M such that αλ + c
4 = 0 at p. Then we

see from (5.7) that λ − α
2 6= 0, and AφX = c

4(2λ−α)φX at p. Applying X to
(5.3) and using αλ + c

4 = 0, we obtain λ = 0 and hence c = 0 at p. It is a
contradiction.

Therefore we see that αλ + c
4 6= 0 on M , and from (5.6) that AφX = λφX

for any vector field X satisfying AX = λX. Therefore from this results we
obtain

(5.8) φA = Aφ

on the whole M .
Conversely if it satisfies (5.8), then it is easily seen that (5.3) holds, that

is, RξLξg = 0 is satisfies on M . Thus Theorem 5.2 follows from Theorem
O-MR. ¤
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