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QUARTET CONSISTENCY COUNT METHOD FOR
RECONSTRUCTING PHYLOGENETIC TREES

Jin-Hwan Cho, Dosang Joe, and Young Rock Kim

Abstract. Among the distance based algorithms in phylogenetic tree
reconstruction, the neighbor-joining algorithm has been a widely used
and effective method. We propose a new algorithm which counts the
number of consistent quartets for cherry picking with tie breaking. We
show that the success rate of the new algorithm is almost equal to that
of neighbor-joining. This gives an explanation of the qualitative nature
of neighbor-joining and that of dissimilarity maps from DNA sequence
data. Moreover, the new algorithm always reconstructs correct trees from
quartet consistent dissimilarity maps.

1. Introduction

The neighbor-joining algorithm is widely used among all distance based
methods for phylogenetic tree reconstruction. In spite of its simplicity neighbor-
joining has become a de facto standard and continued to surface as an effective
candidate method for constructing large phylogenies. There have been many
studies related to neighbor-joining in many aspects [1, 2, 7, 8]. Questions like
how, when, and why neighbor-joining works, have been the main issues in the
empirical and theoretical studies of phylogenetic tree constructions.

We propose a new algorithm, Quartet Consistency Count abbreviated to
QCC, which gives a partial answer for these questions. How does the QCC
algorithm work? The QCC algorithm replaces the cherry picking criterion in
neighbor-joining with a new one, the QC-criterion in Theorem 3, which is to
find a pair having maximum quartet consistency counts.

The observation is that there are many irrelevant pairwise distances esti-
mated from DNA sequence data which might reconstruct wrong trees. The
noises or errors from a dissimilarity map are accumulated to pick irrelevant
cherries in neighbor-joining. However quartet consistency determines how four
species are partitioned into two pairs, and its structure is well preserved in the
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empirical DNA sequence data. It is reasonable to consider quartet consistency
rather than adding the lengths of related edges as neighbor-joining.

When does the QC-criterion always reconstruct a correct tree? Atteson
proved in [1] that neighbor-joining always reconstructs a correct tree when l∞
radius is 1

2 . The QC-criterion also has the same l∞ radius which is proved in
Corollary 7. Unfortunately, very small percentage of DNA sequence data does
satisfy the l∞ radius condition. However the QC-criterion always works under
the condition when all quartets are consistent, which is proved in Theorem 6.
It is estimated that the quartet consistency rate is relatively high and strongly
related with the success rate of neighbor-joining.

The success rate of QCC is remarkably similar to that of neighbor-joining
even though the tree topologies they generate are quite different (see Figure 2).
Nevertheless QCC takes a quite different path in constructing trees compared
to neighbor-joining. A sample data analysis in Figure 3 shows that the rate
of picking identical cherries in order is less than 65% even though the two
algorithms generate the same tree topologies.

Why do neighbor-joining and QCC work? This question is hard to answer.
On the other hand we have seen that the success rates of neighbor-joining and
QCC are almost same. Since the success of QCC is due to quartet consistency,
it is reasonable to say that neighbor-joining reflects the quartet structure well.
The QCC algorithm gives an explanation of the qualitative nature of neighbor-
joining and that of dissimilarity maps from DNA sequence data.

2. Quartet consistency and the QC-criterion

Recall that a dissimilarity map on [n] := {1, 2, . . . , n} is a function d : [n]×
[n] → R such that d(i, i) = 0 and d(i, j) = d(j, i) ≥ 0. A dissimilarity map d is
called a metric on [n] if the triangle inequality holds: d(i, j) ≤ d(i, k) + d(k, j)
for all i, j, k ∈ [n]. A metric d is a tree metric if there exists a tree T with
n leaves, labeled by [n], and a non-negative length for each edge of T , such
that the length of the unique path from leaf x to leaf y equals d(x, y) for all
x, y ∈ [n]. We sometimes write dT for the tree metric d which is derived from
the tree T .

Given four leaves i, j, k, l in a tree T , we say that (ij; kl) is a quartet if the
path from i to j has no common edge to the path from k to l. In terms of the
tree metric dT , it is equivalent to the following four point condition [4]:

(1) dT (i, j) + dT (k, l) ≤ dT (i, k) + dT (j, l) = dT (i, l) + dT (j, k).

We define a cherry of a tree by a pair of leaves which are both adjacent
to the same (internal) node. This definition of cherry can be reinterpreted as
follows: The pair {i, j} is a cherry if and only if (ij; kl) is a quartet for any
pair of leaves {k, l} ⊂ [n] \ {i, j}. In other words, a cherry of a tree is a pair
of leaves which defines maximum quartets combining with all other pairs, the
number is always

(
n−2

2

)
.
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Let d be a dissimilarity map on [n]. For any i, j, k, l ∈ [n] we set

w(ij; kl) := 1
4

[
d(i, k) + d(j, l) + d(i, l) + d(j, k)− 2[d(i, j) + d(k, l)]

]
.

In particular, the function w provides a natural weight for quartets, when d is
a tree metric, that is, the length of the path which connects the path between
i and j with the path between k and l.

The neighbor-joining algorithm makes use of the following cherry picking
theorem [11] by peeling off cherries to recursively build a tree.

Theorem 1. If d is a tree metric on [n], then any pair of leaves that maximizes
Zd(i, j) =

∑
{k,l}⊂[n]\{i,j} w(ij; kl) is a cherry in the tree.

An equivalent, but computationally superior, formulation is the following
Q-criterion [10], which is the unique selection criterion in some sense [2].

Corollary 2. If d is a tree metric on [n], then any pair of leaves that minimizes
Qd(i, j) = (n− 2)d(i, j)−∑

k 6=i d(i, k)−∑
k 6=j d(j, k) is a cherry in the tree.

We now introduce the notion of quartet consistency and then propose a
new criterion called the QC-criterion which counts the number of consistent
quartets to determine the cherries.

Definition. A dissimilarity map d is quartet consistent with a tree T if

(2) d(i, j) + d(k, l) ≤ min{d(i, k) + d(j, l), d(i, l) + d(j, k)}
for all quartets (ij; kl) in T . Note that any tree metric dT is quartet consistent
with T since dT satisfies the four point condition (1).

Remark. In terms of the weight function w, the quartet consistency condition
(2) is equivalent to w(ij; kl) ≥ max{w(ik; jl), w(il; jk)} which is used in [8,
Definition 8].

Theorem 3. If d is a tree metric on [n], then any pair of leaves that maximizes

QCd(i, j) := the number of pairs {k, l} ⊂ [n] \ {i, j} such that

d(i, j) + d(k, l) ≤ min{d(i, k) + d(j, l), d(i, l) + d(j, k)}
is a cherry in the tree.

Proof. Since d is a tree metric, the four point condition (1) implies that QCd(i,j)
equals the number of pairs {k, l} ⊂ [n] \ {i, j} such that (ij; kl) is a quartet,
which becomes the maximum number

(
n−2

2

)
if and only if {i, j} is a cherry. ¤

The following theorem has been a widely used justification for the observed
success of neighbor-joining.

Theorem 4 (Atteson [1]). Neighbor-joining has l∞ radius 1
2 .
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This implies that neighbor-joining always reconstruct a correct tree if the
distance estimates are at most half the minimal edge length of the tree away
from their true value. Two conditions are introduced in [8] to explain why
neighbor-joining is useful in practice. One is quartet consistent and the other
is quartet additive which appears to be rather technical. It is also verified that
Atteson’s theorem is a special case of the following theorem [8, Theorem 17].

Theorem 5. If d is quartet consistent and quartet additive with a tree T , then
neighbor-joining applied to d will construct a tree with same topology as T .

Atteson’s condition is sufficient to satisfy the quartet consistent and quartet
additive condistions. Since these two conditions are not always satisfied, the
success rate of reconstructing a correct tree by neighbor-joining is limited.
In practical computation, however, the pairwise distances are estimated from
noisy data, and consequently, the resulting dissimilarity map is very unlikely
to be a tree metric. The dissimilarity map by estimating distances from DNA
sequence data does not satisfy the quartet consistency and quartet additive
conditions in most cases even when neighbor-joining is successful. In practical
sense, it is not fully understood why neighbor-joining is successful.

We state the consistency theorem for the QC-criterion. It says that the QC-
criterion for cherry picking with the same reduction step as neighbor-joining
always reconstruct a correct tree whenever a dissimilarity map is quartet con-
sistent.

Theorem 6. If a dissimilarity map d is quartet consistent with a tree T , then
the QC-criterion for cherry picking with the reduction step of neighbor-joining
applied to d will construct a tree with the same topology as T .

Proof. Since d is quartet consistent with T , QCd(i, j) is greater or equal to the
number of pairs {k, l} ⊂ [n]\{i, j} such that (ij; kl) is a quartet, which becomes
the maximum number

(
n−2

2

)
when {i, j} is a cherry in T . Therefore, the QC-

criterion always picks a cherry if d is quartet consistent with T . It suffices to
show that the quartet consistency condition is preserved in the reduction step
of neighbor-joining.

Suppose that {i, j} is a cherry picked in the previous step. The reduction
step of neighbor-joining constructs the reduced tree T̃ by removing the two
leaves i, j and adding a new one i∗. The dissimilarity map is also modified
by the equation d(i∗, k) = 1

2

[
d(i, k) + d(j, k) − d(i, j)

]
for all k ∈ [n] \ {i, j}.

We will show that the modified dissimilarity map is quartet consistent with T̃ .
Note that (i∗k; lm) is a quartet in T̃ if and only if (ik; lm) and (jk; lm) are
both quartets in T .

Suppose (i∗k; lm) is a quartet in T̃ , then we have

d(i, k) + d(l,m) ≤ min
{
d(i, l) + d(k, m), d(i,m) + d(k, l)

}
,

d(j, k) + d(l, m) ≤ min
{
d(j, l) + d(k,m), d(j,m) + d(k, l)

}
,
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since d is quartet consistent with T . Combining these two inequalities, we get

d(i, k) + d(j, k) + 2d(l,m)

≤ min{d(i, l) + d(j, l) + 2d(k, m), d(i,m) + d(j, m) + 2d(k, l)}.
Therefore

d(i∗, k) + d(l,m) = 1
2

[
d(i, k) + d(j, k) + 2d(l,m)− d(i, j)

]

≤ min
{

1
2 [d(i, l) + d(j, l)− d(i, j)] + d(k, m),
1
2 [d(i, m) + d(j, m)− d(i, j)] + d(k, l)

}

= min{d(i∗, l) + d(k, m), d(i∗,m) + d(k, l)}. ¤

We can also prove that the QC-criterion has l∞ radius 1
2 . This means,

like neighbor-joining, if the distance estimates are at most half the minimal
edge length of the tree away from their true values then the QC-criterion will
reconstruct a correct tree. It was proved in [8, Corollary 20] that the l∞ radius
1
2 condition implies the quartet consistent and quartet additive conditions. We
would like to include a short proof of it to make this paper self-contained.

Corollary 7. The QC-criterion has l∞ radius 1
2 .

Proof. Suppose that distance estimates are at most half of the minimal edge
length of the tree. Then it is quartet consistent with it. Since min

{
d(i, k) +

d(j, l), d(i, l) + d(j, k)
}− [

d(i, j) + d(k, l)
]

is less than four times of maximum
noises minus two times of length of connecting edge associated with the quartet
(ij, kl), if maximum error is less than half of the minimal edge length, the
quartet structure is consistent with the tree. ¤

Unlike neighbor-joining, the selection criterion QC is not distance linear [2].
It rather depends on how a dissimilarity map preserves the quartet structures
of a given tree.

Remark. In [8, Example 11], they constructed a quartet consistent metric on
an eight leaves tree which cannot be reconstructed by neighbor-joining. By
Theorem 6, QC-criterion will reconstruct the correct tree.

3. Performance of the quartet consistency count algorithm

The Quartet Consistency Count algorithm consists of two steps, one is the
cherry picking step and the other is the reduction step. It adopts the QC-
criterion instead of the Q-criterion of neighbor-joining for the cherry picking
step, but the same algorithm for the reduction step as neighbor-joining.

We sometimes get different tree topologies for one dissimilarity map if the
QC-criterion is used solely in the cherry picking step. This happens when there
are more than one pair having the same quartet consistency count. In this case
the order of picking cherries depends on the order of leaves in the input data,



154 JIN-HWAN CHO, DOSANG JOE, AND YOUNG ROCK KIM

and the resulting tree might have different topologies. To overcome the defect
a tie-breaking routine is required in the QCC algorithm.

We have tested several tie breaking methods, one of which gives a penalty for
the bad case when the inequality d(i, j)+d(k, l) > max{d(i, k)+d(j, l), d(i, l)+
d(j, k)} happens, and another one minimizing the sum of errors, |d(i, k) +
d(j, l)−d(i, l)−d(j, k)|. Most of all, minimizing the value Qd(i, j) in Corollary 2
gave a better success rate, and it was adopted for the tie breaking routine in
the QCC algorithm as follows:

Quartet Consistency Count Algorithm

Input: A dissimilarity map d on the set [n]
Output: A phylogenetic tree T whose tree metric dT is close to d

Cherry picking step: Find a pair {i, j} having the maximum QCd(i, j) count.
If there are more than one such pair, choose a pair having the minimum Qd(i, j)
value among them.
Reduction step: Remove {i, j} from the tree, thereby creating a new leaf i∗.
For each leaf k among the remaining n − 2 leaves, set d(i∗, k) = 1

2 [d(i, k) +
d(j, k) − d(i, j)]. Return to the cherry picking step until there are no more
leaves to collapse.

Success rates of QCC and neighbor-joining

The success rate of QCC is discussed in the perspective of neighbor-joining.
We tested QCC with simulated data on the two parameter family of trees
described in [11]. We simulated 1,000 data sets on each of the nine tree shapes,
Tn

0 , Tn
1 , and Tn

2 when the number of leaves n = 8, 12, and 16 (see Figure 1)
at the three edge length ratios, a/b = 0.01/0.04, 0.02/0.13, 0.03/0.34 for T0,
and a/b = 0.01/0.07, 0.02/0.19, 0.03/0.42 for T1 and T2. This was repeated
three times for sequences of length 500, 1000, and 2000 bp. The Juke-Cantor
distance method for GTR model was used to get pairwise distances from the
simulated DNA sequence data generated by Seq-Gen [9].

Tabel 1 shows the success rate of QCC compared with neighbor-joining. The
numbers inside parentheses are the differences between the success rate of QCC
and that of neighbor-joining, positive (resp. negative) numbers represent that
the success rate of QCC is better (resp. worse) than that of neighbor-joining.
It is remarkable that the success rates of the two algorithms are almost same,
and that the differences are independent of the tree shapes and the bp lengths
of simulated DNA sequence data.

Figure 2 shows an interesting fact that the differences do not vary even if
the tree topologies generated by the two algorithms are quite different. Note
that the difference rate is still quite small when the rate of generating the same
tree topologies is around 30%.
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Figure 1. Nine tree shapes Tn
0 , Tn

1 , and Tn
2 for n = 8, 12, and 16

Independent cherry picking order

Even success rates of QCC and neighbor-joining are almost same to each
other, the paths of picking cherries in order are quite different. We investigated
the percentage of picking identical cherries in order out of 1000 data sets for
each 81 different trees. It is interesting to see in Figure 3 that the identical
percentage is not so high even QCC and neighbor-joining generate the same
tree topologies. When the rate of generating the same tree topologies is more
than 95%, the identical percentage does not exceed 65% in the simulated data
sets. It indicates that the QCC algorithm takes quite different paths of picking
cherries compared to neighbor-joining.

Quartet consistency rate and neighbor-joining

Quartet consistency rate of a dissimilarity map is the percentage of four
leaves satisfying the quartet consistency condition (2) with a given tree T over
all possible quartets in T . The QCC algorithm heavily depends on this rate,
for instance, it recovers a correct tree when the rate is 100% by Theorem 6.
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Table 1. Success rate of QCC compared with neighbor-
joining: The values denote the success rate of neighbor-joining
in percentage, and the numbers inside parentheses represent
the difference of success rates of QCC compared with neighbor-
joining.

bp 500 1000 2000

a/b 0.01
0.04

0.02
0.13

0.03
0.34

0.01
0.04

0.02
0.13

0.03
0.34

0.01
0.04

0.02
0.13

0.03
0.34

T 8
0 68.4 50.7 10.9 91.6 82.8 26.3 99.4 96.9 56.5

(-0.2) (-0.3) (-0.3) (0.0) (0.0) (0.7) (0.0) (0.0) (-0.8)

T 12
0 63.7 44.5 4.2 93.7 85.0 21.0 99.9 99.0 59.1

(0.1) (0.1) (-0.2) (-0.1) (-0.7) (-0.3) (0.0) (-0.5) (-0.3)

T 16
0 39.0 20.3 0.2 83.9 65.2 5.4 99.3 96.0 35.1

(1.6) (-0.2) (-0.1) (-0.2) (-0.5) (0.5) (0.0) (-0.9) (-1.1)

a/b 0.01
0.07

0.02
0.19

0.03
0.42

0.01
0.07

0.02
0.19

0.03
0.42

0.01
0.07

0.02
0.19

0.03
0.42

T 8
1 72.5 55.9 10.8 95.4 86.7 32.6 99.9 98.7 65.8

(0.0) (-0.3) (-0.6) (-0.1) (-0.2) (0.1) (0.0) (0.0) (0.1)

T 12
1 59.9 44.0 3.0 93.5 81.3 24.3 99.7 99.0 65.1

(0.2) (0.2) (0.6) (0.1) (0.0) (0.0) (0.0) (0.0) (0.3)

T 16
1 51.0 32.3 1.8 92.0 80.7 15.0 99.6 98.6 55.2

(0.6) (0.3) (-0.4) (0.5) (0.4) (-0.1) (0.0) (-0.1) (0.9)

a/b 0.01
0.07

0.02
0.19

0.03
0.42

0.01
0.07

0.02
0.19

0.03
0.42

0.01
0.07

0.02
0.19

0.03
0.42

T 8
2 81.5 68.2 19.0 96.4 91.3 44.2 99.9 98.6 70.0

(-0.1) (0.0) (0.4) (0.0) (-0.1) (-0.4) (0.0) (0.0) (-0.1)

T 12
2 69.0 55.8 4.3 96.6 89.7 26.4 99.8 99.5 60.8

(-0.5) (0.4) (0.3) (0.0) (-0.3) (-1.1) (0.0) (0.0) (0.1)

T 16
2 64.7 47.3 2.2 95.5 87.2 17.9 99.9 99.3 61.0

(0.0) (-0.2) (0.0) (0.0) (0.3) (2.5) (0.0) (-0.1) (-0.4)

We investigated in Figure 4 that the correlation of quartet consistency rate
with respect to the success rate of neighbor-joining. The correlation coefficient
was computed as 0.8736. The graph shows that the success rate of neighbor-
joining near 100% is almost same as quartet consistency, as we expected, since
the success rates of QCC and neighbor-joining are almost same. Quartet con-
sistency rates also increase as bp lengths increase. The dashed line in the
graph, denoted by T 8

0 (resp. T 16
0 ) connects the three points representing the

success rates of neighbor-joining for the tree T 8
0 (resp. T 16

0 ) with the ratio
a/b = 0.01/0.04 when the bp lengths are 500, 1000, and 2000.
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Figure 2. Differences of the success rates of neighbor-joining
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4. Discussion

Quartet based methods

There are many quartet based methods in reconstructing the phylogenetic
trees. Several methods were proposed in [3] to construct the optimal trees
which agree with the largest number of quartets or the maximum weight set of
quartets. The general problems are known to be NP-hard. The implemented
algorithms, Quartet-Cleaning and Q∗, have quite different nature statistically
compared to neighbor-joining [6]. The QCC algorithm is quite different to the
well-known quartet based methods derived from quartet puzzling problem, it
is shown to be close to neighbor-joining.

QC-criterion without tie-breaking

The cherry picking step in the QCC algorithm requires a tie-breaking routine
to avoid the dependency of the order of the leaves in the input data. To estimate
the best and the worst behavior of the algorithm without tie-breaking, we
shuffled the order of the leaves 100 times randomly, and then counted how
many correct trees are reconstructed. By counting as a success when there is
at least one such correct tree out of 100 trials, we get the best success rate. On
the other hand, the worst success rate follows if we count as a success when the
correct tree is always reconstructed for all trials. The upper and lower solid
lines in Figure 5 represent the best and the worst success rates, respectively.
The dashed line in the middle represents the average of the counts.
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Figure 5. QC-criterion without tie breaking

As the figure shows, it might be possible to have a good tie-breaking routine
which gives a better success rate than that of neighbor-joining. We believe that
a deeper understanding of tie-breaking routine of the QCC algorithm should
have more results in this direction.

Conclusion

The behavior of the QCC algorithm is similar to that of neighbor-joining.
From this similarity QCC reflects the qualitative nature of neighbor-joining
and that of dissimilarity maps from DNA sequence data. The QCC algorithm
has the same l∞ radius 1

2 as neighbor-joining, and it requires only the quartet
consistency condition to reconstruct a correct tree.
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