β -PRECONVEX SETS ON PRECONVEXITY SPACES

WON KEUN MIN

ABSTRACT. In this paper, we introduce the concept of β -preconvex sets on preconvexity spaces. We study some properties for β -preconvex sets by using the co-convexity hull and the convexity hull. Also we introduce and study the concepts of βc -convex function and $\beta^* c$ -convex function.

1. Introduction

In [1], Guay introduced the concept of preconvexity spaces defined by a binary relation on the power set P(X) of a nonempty set X and investigated some properties. He showed that a preconvexity on a nonempty set yields a convexity space in the same manner as a proximity [5] yields a topological space. In [3], we introduced the concepts of co-convexity hull and co-convex sets on preconvexity spaces. And we characterized *c*-convex functions and *c*-concave functions by using the co-convexity hull and the convexity hull. In [4] we introduced the semi-preconvex set defined by the co-convexity hull on a preconvexity space and study some basic properties. And we introduced the concepts of β -preconvex sets. In this paper, we introduce the concept of β -preconvex set on a preconvexity space and study some basic properties. And we introduce the concepts of β -preconvex functions and β^*c -convex functions which are defined by the β -preconvex sets. Finally, some properties of βc -convex functions and β^*c -convex functions and β^*c -convex functions and β^*c -convex functions and β^*c -convex functions which are defined by the β -preconvex sets. Finally, some properties of βc -convex functions and β^*c -

(a) a function $f: (X, \sigma) \to (Y, \mu)$ on two preconvexity spaces is βc -convex if and only if for each $A \subset Y$, $f^{-1}(I(A))\sigma I(G(f^{-1}(A)))$;

(b) if a function $f:(X,\sigma) \to (Y,\mu)$ on two preconvexity spaces is *c*-concave and βc -convex, then f is $\beta^* c$ -convex.

C2010 The Korean Mathematical Society

Received September 8, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 52A01.

Key words and phrases. preconvexity, co-convex sets, convexity, β^*c -convex function, βc -convex function, co β -preconvex sets, β -preconvex sets.

WON KEUN MIN

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty set. A binary relation σ on P(X) is called a preconvexity on X if the relation satisfies the following properties; we write $x\sigma A$ for $\{x\}\sigma A$:

- (1) If $A \subset B$, then $A\sigma B$.
- (2) If $A\sigma B$ and $B = \emptyset$, then $A = \emptyset$.
- (3) If $A\sigma B$ and $b\sigma C$ for all $b \in B$, then $A\sigma C$.
- (4) If $A\sigma B$ and $x \in A$, then $x\sigma B$.

The pair (X, σ) is called a preconvexity space. Let (X, σ) be a preconvexity space and $A \subset X$. $G(A) = \{x \in X : x\sigma A\}$ is called the convexity hull of a subset A. A is called convex [1] if $G_{\sigma}(A) = A$ (simply, G(A)).

 $I_{\sigma}(A) = \{x \in A : x \notin (X - A)\}$ (simply, I(A)) is called the co-convexity hull [3] of a subset A. And A is called a co-convex set if I(A) = A [3]. Let $\mathcal{I}(X) = \{A \subset X : I(A) = A\}$ and $\mathcal{G}(X) = \{A \subset X : G(A) = A\}$.

Theorem 2.2 ([1, 3]). For a preconvexity space (X, σ) ,

- (1) $G(\emptyset) = \emptyset$, I(X) = X.
- (2) $A \subset G(A)$, $I(A) \subset A$ for all $A \subset X$.
- (3) If $A \subset B$, then $G(A) \subset G(B)$, $I(A) \subset I(B)$.
- (4) $G(G(A)) = G(A), I(I(A)) = I(A) \text{ for } A \subset X.$
- (5) I(A) = X G(X A) and G(A) = X I(X A).

Theorem 2.3 ([1, 3]). Let σ be a preconvexity on X and $A, B \subset X$. Then

- (1) $A\sigma B$ if and only if $A \subset G(B)$ if and only if $I(X B) \subset X A$.
- (2) $A\sigma B$ if and only if $G(A)\sigma G(B)$ if and only if $I(X B)\sigma I(X A)$.

Definition 2.4 ([4]). Let (X, σ) be a preconvexity space and $A \subset X$. A is called a semi-preconvex set if $A\sigma I(A)$. And A is called a cosemi-preconvex set if the complement of A is a semi-preconvex set.

Let $S_{\sigma}(X)$ (resp., $SC_{\sigma}(X)$) denote the set of all semi-preconvex sets (resp., cosemi-preconvex sets) in a preconvexity space (X, σ) .

Theorem 2.5 ([4]). Let (X, σ) be a preconvexity space and $A \subset X$. Then

- (1) A is a semi-preconvex set if and only if $A \subset G(I(A))$.
- (2) A is a cosemi-preconvex set if and only if $I(G(A)) \subset A$.

We recall that the notions of c-convex function and c-concave function: Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be c-concave [2] if for $C, D \subset Y$ whenever $C\mu D$, $f^{-1}(C)\sigma f^{-1}(D)$. A function $f: X \to Y$ is said to be c-convex [1] if $A\sigma B$ implies $f(A)\mu f(B)$. And f is c-convex if and only if for each $U \in \mathcal{I}(Y)$, $f^{-1}(U) \in \mathcal{I}(X)$ [3].

3. β -preconvex sets

Definition 3.1. Let (X, σ) be a preconvexity space and $A \subset X$. A is called a β -preconvex set if $A\sigma I(G(A))$. And A is called a co β -preconvex set if the complement of A is a β -preconvex set.

Let $\beta_{\sigma}(X)$ (resp., $\beta C_{\sigma}(X)$) denote the set of all β -preconvex sets (resp., $co\beta$ -preconvex sets) in a preconvexity space (X, σ) .

Now we get the following implications but the converses are not true in general as shown in the next example:

co-convex \Rightarrow semi-convex $\Rightarrow \beta$ -convex

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{b, c\}\}$. Define $A\sigma B$ to mean $A \subset cl(B)$, the closure of B in X. Then σ is a preconvexity on X. In the preconvexity space $(X, \sigma), \mathcal{G}(X) = \{\emptyset, X, \{a\}\}, \mathcal{I}(X) = \{\emptyset, X, \{b, c\}\}, \beta_{\sigma}(X) = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\mathcal{S}_{\sigma}(X) = \{\emptyset, X, \{b, c\}\}$. Hence we know that a β -convex set $\{a, b\}$ is neither co-convex nor semi-convex.

From Theorem 2.2 and Theorem 2.3, we get the following:

Theorem 3.3. Let (X, σ) be a preconvexity space and $A \subset X$. Then

- (1) A is a β -preconvex set if and only if $A \subset G(I(G(A)))$.
- (2) A is a co β -preconvex set if and only if $I(G(I(A))) \subset A$.

Theorem 3.4. Every semi-preconvex set is a β -preconvex set in a preconvexity space (X, σ) .

Proof. Let A be a semi-preconvex set; then by definition of semi-preconvex sets, $A\sigma I(A)$. By Theorem 2.2 and the transitive property of preconvexity, $A\sigma I(G(A))$.

Corollary 3.5. Every cosemi-preconvex set is $co\beta$ -preconvex in a preconvexity space (X, σ) .

Proof. Obvious.

Theorem 3.6. In a preconvexity space (X, σ) , X and \emptyset are both β -preconvex and $co\beta$ -preconvex.

Proof. By Theorem 2.2, it is obvious.

Theorem 3.7. Let (X, σ) be a preconvexity space. Then the arbitrary union of β -preconvex sets is a β -preconvex set.

Proof. Let $\mathfrak{F} = \{A_{\alpha} : A_{\alpha} \in \beta_{\sigma}(\mathbf{X})\}$ be any subfamily of $\beta_{\sigma}(\mathbf{X})$ and $x \in \cup \mathfrak{F}$. Then there exists a β -preconvex set A_{α} containing x such that $x \in A_{\alpha}\sigma I(G(A_{\alpha}))$ and so from Definition 2.1(4), $x\sigma I(G(A_{\alpha}))$. And from Theorem 2.2 and $A_{\alpha} \subset \cup \mathfrak{F}$, it follows $I(G(A_{\alpha})) \subset I(G(\cup \mathfrak{F}))$. So by the transitive property of preconvexity, we have $x\sigma I(G(\cup \mathfrak{F}))$. Finally, by Definition 2.1(3), $\cup \mathfrak{F}\sigma I(G(\cup \mathfrak{F}))$.

Theorem 3.8. In a preconvexity space (X, σ) , the arbitrary intersection of $co\beta$ -preconvex sets is a $co\beta$ -preconvex set.

Proof. From Theorem 2.2 and Theorem 3.7, it is obvious.

Definition 3.9. Let (X, σ) be a preconvexity space and $A \subset X$.

(1) $\beta G(A) = \cap \{F : A \subset F, F^c \in \beta_{\sigma}(X)\}.$

(2) $\beta I(A) = \bigcup \{ U : U \subset A, U \in \beta_{\sigma}(X) \}.$

Theorem 3.10. Let (X, σ) be a preconvexity space and $A, B \subset X$.

- (1) $I(A) \subset \beta I(A) \subset A$.
- (2) $A \subset \beta G(A) \subset G(A)$.
- (3) A is β -preconvex if and only if $A = \beta I(X)$.
- (4) A is $co\beta$ -preconvex if and only if $A = \beta C(X)$.

Proof. (1) and (2) are obvious from Theorem 3.4 and Corollary 3.5.

- (3) It is obtained from Theorem 3.7.
- (4) It is obtained from Theorem 3.8.

Theorem 3.11. Let (X, σ) be a preconvexity space and $A, B \subset X$.

- (1) $\beta I(X) = X$.
- (2) $\beta I(A) \subset A$.
- (3) If $A \subset B$, then $\beta I(A) \subset \beta I(B)$.
- (4) $\beta I(\beta I(A)) = \beta I(A).$

Proof. (1), (2) and (3) are obvious.

(4) Since $\beta I(A) \subset A$, by (3), $\beta I(\beta I(A)) \subset \beta I(A)$.

For the converse, let $x \in \beta I(A)$; then since $x \in \beta I(A) \subset \beta I(A)$ and $\beta I(A)$ is a β -preconvex set, we get $x \in \beta I(\beta I(A))$ by Definition 3.9(2).

Theorem 3.12. Let (X, σ) be a preconvexity space and $A, B \subseteq X$.

(1) $\beta G(\emptyset) = \emptyset$. (2) $A \subset \beta G(A)$. (3) If $A \subset B$, then $\beta G(A) \subset \beta G(B)$. (4) $\beta G(\beta G(A)) = \beta G(A)$.

Proof. It is similar to the proof of Theorem 3.11.

4. βc -convex functions and $\beta^* c$ -convex functions

Definition 4.1. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be βc -convex if for each $A \in \mathcal{I}(Y), f^{-1}(A) \in \beta_{\sigma}(X)$.

Every *sc*-convex function is βc -convex but the converse is not always true as shown the next example:

Example 4.2. In Example 3.2, consider a function $f : (X, \sigma) \to (X, \sigma)$ defined as follows f(a) = b, f(b) = c and f(c) = a. Then f is βc -convex but not sc-convex because $f^{-1}(\{b,c\}) = \{a,b\}$ is not semi-preconvex.

108

Theorem 4.3. For two preconvexity spaces (X, σ) and (Y, μ) , a function $f : (X, \sigma) \to (Y, \mu)$ is β c-convex if and only if for each $A \subset Y$, $f^{-1}(I(A))\sigma I(G(f^{-1}(A)))$.

Proof. Suppose that f is βc -convex and let $A \subset Y$; then since $I(A) \subset A$, by Theorem 2.2, we get $I(G(f^{-1}(I(A))))\sigma I(G(f^{-1}(A)))$. Since $I(A) \in \mathcal{I}(Y)$ and f is βc -convex, $f^{-1}(I(A))\sigma I(G(f^{-1}(I(A))))$. By the transitive property of preconvexity, we have $f^{-1}(I(A))\sigma I(G(f^{-1}(A)))$.

For the converse, let $A \in \mathcal{I}(Y)$; then since A = I(A), by hypothesis, we have $f^{-1}(A)\sigma I(G(f^{-1}(A)))$. Thus $f^{-1}(A) \in \beta_{\sigma}(X)$.

Theorem 4.4. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then the following things are equivalent:

(1) f is βc -convex.

(2) $f^{-1}(I(B)) \subset G(I(G(f^{-1}(B))))$ for all $B \subset Y$.

(3) $I(G(I(f^{-1}(B)))) \subset f^{-1}(G(B))$ for all $B \subset Y$.

(4) $f(I(G(I(A)))) \subset G(f(A))$ for all $A \subset X$.

(5) For each $U \in \mathcal{G}(Y)$, $f^{-1}(U) \in \beta C_{\sigma}(X)$.

Proof. $(1) \Rightarrow (2)$ By Theorem 4.3 and Theorem 2.3, we get the result.

 $\begin{array}{l} (2) \Rightarrow (3) \text{ Let } B \subset Y; \text{ then by } (2), \text{ we have } X - f^{-1}(G(B)) = f^{-1}(I(Y - B))) \subset G(I(G(f^{-1}(Y - B)))) = X - I(G(I(f^{-1}(B)))). \text{ Hence } (3) \text{ is obtained.} \\ (3) \Rightarrow (4) \text{ Let } A \subset X; \text{ then since } f(A) \subset Y, (4) \text{ is easily obtained by } (3). \\ (5) \Rightarrow (1) \text{ It is obvious.} \end{array}$

From Theorem 3.10 and Theorem 4.4, we get the following:

Theorem 4.5. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then the following things are equivalent:

- (1) f is βc -convex.
- (2) $f^{-1}(I(B)) \subset \beta I(f^{-1}(B))$ for all $B \subset Y$.
- (3) $\beta C(f^{-1}(B)) \subset f^{-1}(G(B))$ for all $B \subset Y$.
- (4) $f(\beta C(A)) \subset G(f(A))$ for all $A \subset X$.

Definition 4.6. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be β^*c -convex if for each $A \in \beta_{\mu}(Y), f^{-1}(A) \in \beta_{\sigma}(X)$.

Every β^*c -convex function is βc -convex but the converse is not always true as shown in the next example:

Example 4.7. In Example 4.2, the function f is βc -convex. But f is not $\beta^* c$ -convex because $f^{-1}(\{b\}) = \{a\}$ is not β -preconvex for a β -preconvex set $\{b\}$.

We have the following:

 $\begin{array}{c} \beta c\text{-convex} \Leftarrow \beta^* c\text{-convex} \\ \uparrow & \uparrow \\ c\text{-convex} \Rightarrow sc\text{-convex} \Leftarrow s^* c\text{-convex} \end{array}$

Theorem 4.8. For two preconvexity spaces (X, σ) and (Y, μ) , a function $f : (X, \sigma) \to (Y, \mu)$ is β^*c -convex if and only if for $A \subset Y$, $f^{-1}(A)\sigma I(G(f^{-1}(A)))$ whenever $A\mu I(G(A))$.

Proof. From Definition 3.1, it is obvious.

Theorem 4.9 ([3]). Let $f : X \to Y$ be a function on two preconvexities (X, σ) and (Y, μ) . Then the following things are equivalent:

- (1) f is c-concave
- (2) $f^{-1}(G(A)) \subset G(f^{-1}(A))$ for all $A \subset Y$.
- (3) $I(f^{-1}(A)) \subset f^{-1}(I(A))$ for all $A \subset Y$.

Theorem 4.10. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then if f is c-concave and β c-convex, then f is β^* c-convex.

Proof. Suppose f is c-concave and βc -convex. Let $A \in \beta_{\mu}(Y)$; then $A\mu I(G(A))$ and since f is c-concave, we have $f^{-1}(A)\sigma f^{-1}(I(G(A)))$. From Theorem 4.3 and Theorem 4.9, it follows

$$f^{-1}(I(G(A)))\sigma I(G(f^{-1}(G(A))))\sigma I(G(G(f^{-1}(A)))) = I(G(f^{-1}(A))).$$

By the transitive property of preconvexity, we have $f^{-1}(A)\sigma I(G(f^{-1}(A)))$. Hence from Theorem 4.8, f is β^*c -convex.

Theorem 4.11. Let $f : X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then the following things are equivalent:

- (1) f is β^*c -convex.
- (2) For each $U \in \beta C_{\mu}(Y)$, $f^{-1}(U) \in \beta C_{\sigma}(X)$.
- (3) $f(\beta C(A)) \subset \beta C(f(A))$ for all $A \subset X$.
- (4) $\beta C(f^{-1}(B)) \subset f^{-1}(\beta C(B))$ for all $B \subset Y$.
- (5) $f^{-1}(\beta I(B)) \subset \beta I(f^{-1}(B))$ for all $B \subset Y$.

Proof. Straightforward.

References

- M. D. Guay, An introduction to preconvexity spaces, Acta Math. Hungar. 105 (2004), no. 3, 241–248.
- [2] W. K. Min, Some results on preconvexity spaces, Bull. Korean Math. Soc. 45 (2008), no. 1, 39–44.
- [3] _____, A note on preconvexity spaces, Honam Math. J. **29** (2007), no 4, 589–595.
- [4] _____, Semi-preconvex sets on preconvexity spaces, Commun. Korean Math. Soc. 23 (2008), no. 2, 251–256.
- [5] S. A. Naimpally and B. D. Warrack, *Proximity Spaces*, Cambridge University Press, 1970.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail address*: wkmin@kangwon.ac.kr