β-PRECONVEX SETS ON PRECONVEXITY SPACES

Won Keun Min

Abstract

In this paper, we introduce the concept of β-preconvex sets on preconvexity spaces. We study some properties for β-preconvex sets by using the co-convexity hull and the convexity hull. Also we introduce and study the concepts of βc-convex function and $\beta^{*} c$-convex function.

1. Introduction

In [1], Guay introduced the concept of preconvexity spaces defined by a binary relation on the power set $P(X)$ of a nonempty set X and investigated some properties. He showed that a preconvexity on a nonempty set yields a convexity space in the same manner as a proximity [5] yields a topological space. In [3], we introduced the concepts of co-convexity hull and co-convex sets on preconvexity spaces. And we characterized c-convex functions and c concave functions by using the co-convexity hull and the convexity hull. In [4] we introduced the semi-preconvex set defined by the co-convexity hull on a preconvexity space and study some basic properties. And we introduced the concepts of $s c$-convex functions and $s^{*} c$-convex functions which are defined by the semi-preconvex sets. In this paper, we introduce the concept of β-preconvex set on a preconvexity space and study some basic properties. And we introduce the concepts of βc-convex functions and $\beta^{*} c$-convex functions which are defined by the β-preconvex sets. Finally, some properties of βc-convex functions and $\beta^{*} c$-convex functions are discussed. In particular,
(a) a function $f:(X, \sigma) \rightarrow(Y, \mu)$ on two preconvexity spaces is βc-convex if and only if for each $A \subset Y, f^{-1}(I(A)) \sigma I\left(G\left(f^{-1}(A)\right)\right)$;
(b) if a function $f:(X, \sigma) \rightarrow(Y, \mu)$ on two preconvexity spaces is c-concave and βc-convex, then f is $\beta^{*} c$-convex.

[^0]
2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty set. A binary relation σ on $P(X)$ is called a preconvexity on X if the relation satisfies the following properties; we write $x \sigma A$ for $\{x\} \sigma A$:
(1) If $A \subset B$, then $A \sigma B$.
(2) If $A \sigma B$ and $B=\emptyset$, then $A=\emptyset$.
(3) If $A \sigma B$ and $b \sigma C$ for all $b \in B$, then $A \sigma C$.
(4) If $A \sigma B$ and $x \in A$, then $x \sigma B$.

The pair (X, σ) is called a preconvexity space. Let (X, σ) be a preconvexity space and $A \subset X . G(A)=\{x \in X: x \sigma A\}$ is called the convexity hull of a subset A. A is called convex [1] if $G_{\sigma}(A)=A$ (simply, $G(A)$).
$I_{\sigma}(A)=\{x \in A: x \notin(X-A)\}$ (simply, $\left.I(A)\right)$ is called the co-convexity hull [3] of a subset A. And A is called a co-convex set if $I(A)=A$ [3]. Let $\mathcal{I}(X)=\{A \subset X: I(A)=A\}$ and $\mathcal{G}(X)=\{A \subset X: G(A)=A\}$.

Theorem 2.2 ($[1,3])$. For a preconvexity space (X, σ),
(1) $G(\emptyset)=\emptyset, I(X)=X$.
(2) $A \subset G(A), I(A) \subset A$ for all $A \subset X$.
(3) If $A \subset B$, then $G(A) \subset G(B), I(A) \subset I(B)$.
(4) $G(G(A))=G(A), I(I(A))=I(A)$ for $A \subset X$.
(5) $I(A)=X-G(X-A)$ and $G(A)=X-I(X-A)$.

Theorem 2.3 ([1, 3]). Let σ be a preconvexity on X and $A, B \subset X$. Then
(1) $A \sigma B$ if and only if $A \subset G(B)$ if and only if $I(X-B) \subset X-A$.
(2) $A \sigma B$ if and only if $G(A) \sigma G(B)$ if and only if $I(X-B) \sigma I(X-A)$.

Definition $2.4([4])$. Let (X, σ) be a preconvexity space and $A \subset X . A$ is called a semi-preconvex set if $\operatorname{A\sigma I}(A)$. And A is called a cosemi-preconvex set if the complement of A is a semi-preconvex set.

Let $\mathcal{S}_{\sigma}(X)$ (resp., $\left.\mathcal{S} C_{\sigma}(X)\right)$ denote the set of all semi-preconvex sets (resp., cosemi-preconvex sets) in a preconvexity space (X, σ).

Theorem $2.5([4])$. Let (X, σ) be a preconvexity space and $A \subset X$. Then
(1) A is a semi-preconvex set if and only if $A \subset G(I(A))$.
(2) A is a cosemi-preconvex set if and only if $I(G(A)) \subset A$.

We recall that the notions of c-convex function and c-concave function: Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \rightarrow Y$ is said to be c-concave [2] if for $C, D \subset Y$ whenever $C \mu D, f^{-1}(C) \sigma f^{-1}(D)$. A function $f: X \rightarrow Y$ is said to be c-convex [1] if $A \sigma B$ implies $f(A) \mu f(B)$. And f is c-convex if and only if for each $U \in \mathcal{I}(Y), f^{-1}(U) \in \mathcal{I}(X)$ [3].

3. β-preconvex sets

Definition 3.1. Let (X, σ) be a preconvexity space and $A \subset X . A$ is called a β-preconvex set if $\operatorname{A\sigma I}(G(A))$. And A is called a co β-preconvex set if the complement of A is a β-preconvex set.

Let $\beta_{\sigma}(X)$ (resp., $\left.\beta C_{\sigma}(X)\right)$ denote the set of all β-preconvex sets (resp., co β-preconvex sets) in a preconvexity space (X, σ).

Now we get the following implications but the converses are not true in general as shown in the next example:

$$
\text { co-convex } \Rightarrow \text { semi-convex } \Rightarrow \beta \text {-convex }
$$

Example 3.2. Let $X=\{a, b, c\}$ and $\tau=\{\emptyset, X,\{b, c\}\}$. Define $A \sigma B$ to mean $A \subset \operatorname{cl}(B)$, the closure of B in X. Then σ is a preconvexity on X. In the preconvexity space $(X, \sigma), \mathcal{G}(X)=\{\emptyset, X,\{a\}\}, \mathcal{I}(X)=\{\emptyset, X,\{b, c\}\}, \beta_{\sigma}(X)=$ $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$ and $\mathcal{S}_{\sigma}(X)=\{\emptyset, X,\{b, c\}\}$. Hence we know that a β-convex set $\{a, b\}$ is neither co-convex nor semi-convex.

From Theorem 2.2 and Theorem 2.3, we get the following:
Theorem 3.3. Let (X, σ) be a preconvexity space and $A \subset X$. Then
(1) A is a β-preconvex set if and only if $A \subset G(I(G(A)))$.
(2) A is a co β-preconvex set if and only if $I(G(I(A))) \subset A$.

Theorem 3.4. Every semi-preconvex set is a β-preconvex set in a preconvexity space (X, σ).
Proof. Let A be a semi-preconvex set; then by definition of semi-preconvex sets, $A \sigma I(A)$. By Theorem 2.2 and the transitive property of preconvexity, $A \sigma I(G(A))$.

Corollary 3.5. Every cosemi-preconvex set is coß-preconvex in a preconvexity space (X, σ).
Proof. Obvious.
Theorem 3.6. In a preconvexity space $(X, \sigma), X$ and \emptyset are both β-preconvex and co β-preconvex.
Proof. By Theorem 2.2, it is obvious.
Theorem 3.7. Let (X, σ) be a preconvexity space. Then the arbitrary union of β-preconvex sets is a β-preconvex set.
Proof. Let $\mathfrak{F}=\left\{A_{\alpha}: A_{\alpha} \in \beta_{\sigma}(\mathbf{X})\right\}$ be any subfamily of $\beta_{\sigma}(\mathbf{X})$ and $x \in$ $\cup \mathfrak{F}$. Then there exists a β-preconvex set A_{α} containing x such that $x \in$ $A_{\alpha} \sigma I\left(G\left(A_{\alpha}\right)\right)$ and so from Definition 2.1(4), $x \sigma I\left(G\left(A_{\alpha}\right)\right)$. And from Theorem 2.2 and $A_{\alpha} \subset \cup \mathfrak{F}$, it follows $I\left(G\left(A_{\alpha}\right)\right) \subset I(G(\cup \mathfrak{F}))$. So by the transitive property of preconvexity, we have $x \sigma I(G(\cup \mathfrak{F}))$. Finally, by Definition 2.1(3), $\cup \mathfrak{F} \sigma I(G(\cup \mathfrak{F}))$.

Theorem 3.8. In a preconvexity space (X, σ), the arbitrary intersection of co β-preconvex sets is a co β-preconvex set.
Proof. From Theorem 2.2 and Theorem 3.7, it is obvious.
Definition 3.9. Let (X, σ) be a preconvexity space and $A \subset X$.
(1) $\beta G(A)=\cap\left\{F: A \subset F, F^{c} \in \beta_{\sigma}(X)\right\}$.
(2) $\beta I(A)=\cup\left\{U: U \subset A, U \in \beta_{\sigma}(X)\right\}$.

Theorem 3.10. Let (X, σ) be a preconvexity space and $A, B \subset X$.
(1) $I(A) \subset \beta I(A) \subset A$.
(2) $A \subset \beta G(A) \subset G(A)$.
(3) A is β-preconvex if and only if $A=\beta I(X)$.
(4) A is co β-preconvex if and only if $A=\beta C(X)$.

Proof. (1) and (2) are obvious from Theorem 3.4 and Corollary 3.5.
(3) It is obtained from Theorem 3.7.
(4) It is obtained from Theorem 3.8.

Theorem 3.11. Let (X, σ) be a preconvexity space and $A, B \subset X$.
(1) $\beta I(X)=X$.
(2) $\beta I(A) \subset A$.
(3) If $A \subset B$, then $\beta I(A) \subset \beta I(B)$.
(4) $\beta I(\beta I(A))=\beta I(A)$.

Proof. (1), (2) and (3) are obvious.
(4) Since $\beta I(A) \subset A$, by $(3), \beta I(\beta I(A)) \subset \beta I(A)$.

For the converse, let $x \in \beta I(A)$; then since $x \in \beta I(A) \subset \beta I(A)$ and $\beta I(A)$ is a β-preconvex set, we get $x \in \beta I(\beta I(A))$ by Definition 3.9(2).

Theorem 3.12. Let (X, σ) be a preconvexity space and $A, B \subseteq X$.
(1) $\beta G(\emptyset)=\emptyset$.
(2) $A \subset \beta G(A)$.
(3) If $A \subset B$, then $\beta G(A) \subset \beta G(B)$.
(4) $\beta G(\beta G(A))=\beta G(A)$.

Proof. It is similar to the proof of Theorem 3.11.

4. βc-convex functions and $\beta^{*} c$-convex functions

Definition 4.1. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \rightarrow Y$ is said to be βc-convex if for each $A \in \mathcal{I}(Y), f^{-1}(A) \in \beta_{\sigma}(X)$.

Every sc-convex function is βc-convex but the converse is not always true as shown the next example:

Example 4.2. In Example 3.2, consider a function $f:(X, \sigma) \rightarrow(X, \sigma)$ defined as follows $f(a)=b, f(b)=c$ and $f(c)=a$. Then f is βc-convex but not $s c$ convex because $f^{-1}(\{b, c\})=\{a, b\}$ is not semi-preconvex.

Theorem 4.3. For two preconvexity spaces (X, σ) and (Y, μ), a function f : $(X, \sigma) \rightarrow(Y, \mu)$ is βc-convex if and only if for each $A \subset Y, f^{-1}(I(A)) \sigma I\left(G\left(f^{-1}\right.\right.$ (A))).

Proof. Suppose that f is βc-convex and let $A \subset Y$; then since $I(A) \subset A$, by Theorem 2.2, we get $I\left(G\left(f^{-1}(I(A))\right)\right) \sigma I\left(G\left(f^{-1}(A)\right)\right)$. Since $I(A) \in \mathcal{I}(Y)$ and f is βc-convex, $f^{-1}(I(A)) \sigma I\left(G\left(f^{-1}(I(A))\right)\right)$. By the transitive property of preconvexity, we have $f^{-1}(I(A)) \sigma I\left(G\left(f^{-1}(A)\right)\right)$.

For the converse, let $A \in \mathcal{I}(Y)$; then since $A=I(A)$, by hypothesis, we have $f^{-1}(A) \sigma I\left(G\left(f^{-1}(A)\right)\right)$. Thus $f^{-1}(A) \in \beta_{\sigma}(X)$.

Theorem 4.4. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f: X \rightarrow Y$ a function. Then the following things are equivalent:
(1) f is βc-convex.
(2) $f^{-1}(I(B)) \subset G\left(I\left(G\left(f^{-1}(B)\right)\right)\right)$ for all $B \subset Y$.
(3) $I\left(G\left(I\left(f^{-1}(B)\right)\right)\right) \subset f^{-1}(G(B))$ for all $B \subset Y$.
(4) $f(I(G(I(A)))) \subset G(f(A))$ for all $A \subset X$.
(5) For each $U \in \mathcal{G}(Y), f^{-1}(U) \in \beta C_{\sigma}(X)$.

Proof. (1) \Rightarrow (2) By Theorem 4.3 and Theorem 2.3, we get the result.
$(2) \Rightarrow(3)$ Let $B \subset Y$; then by (2), we have $X-f^{-1}(G(B))=f^{-1}(I(Y-$ $B)) \subset G\left(I\left(G\left(f^{-1}(Y-B)\right)\right)\right)=X-I\left(G\left(I\left(f^{-1}(B)\right)\right)\right)$. Hence (3) is obtained.
(3) \Rightarrow (4) Let $A \subset X$; then since $f(A) \subset Y$, (4) is easily obtained by (3).
(5) \Rightarrow (1) It is obvious.

From Theorem 3.10 and Theorem 4.4, we get the following:
Theorem 4.5. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f: X \rightarrow Y$ a function. Then the following things are equivalent:
(1) f is βc-convex.
(2) $f^{-1}(I(B)) \subset \beta I\left(f^{-1}(B)\right)$ for all $B \subset Y$.
(3) $\beta C\left(f^{-1}(B)\right) \subset f^{-1}(G(B))$ for all $B \subset Y$.
(4) $f(\beta C(A)) \subset G(f(A))$ for all $A \subset X$.

Definition 4.6. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \rightarrow Y$ is said to be $\beta^{*} c$-convex if for each $A \in \beta_{\mu}(Y), f^{-1}(A) \in \beta_{\sigma}(X)$.

Every $\beta^{*} c$-convex function is βc-convex but the converse is not always true as shown in the next example:

Example 4.7. In Example 4.2, the function f is βc-convex. But f is not $\beta^{*} c$-convex because $f^{-1}(\{b\})=\{a\}$ is not β-preconvex for a β-preconvex set $\{b\}$.

We have the following:

$$
\begin{array}{r}
\beta c \text {-convex } \Leftarrow \beta^{*} c \text {-convex } \\
\Uparrow \\
\Uparrow \text {-convex } \Rightarrow s c \text {-convex } \Leftarrow s^{*} c \text {-convex }
\end{array}
$$

Theorem 4.8. For two preconvexity spaces (X, σ) and (Y, μ), a function f : $(X, \sigma) \rightarrow(Y, \mu)$ is $\beta^{*} c$-convex if and only if for $A \subset Y, f^{-1}(A) \sigma I\left(G\left(f^{-1}(A)\right)\right)$ whenever $A \mu I(G(A))$.
Proof. From Definition 3.1, it is obvious.
Theorem 4.9 ([3]). Let $f: X \rightarrow Y$ be a function on two preconvexities (X, σ) and (Y, μ). Then the following things are equivalent:
(1) f is c-concave
(2) $f^{-1}(G(A)) \subset G\left(f^{-1}(A)\right)$ for all $A \subset Y$.
(3) $I\left(f^{-1}(A)\right) \subset f^{-1}(I(A))$ for all $A \subset Y$.

Theorem 4.10. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f: X \rightarrow$ Y a function. Then if f is c-concave and βc-convex, then f is $\beta^{*} c$-convex.

Proof. Suppose f is c-concave and βc-convex. Let $A \in \beta_{\mu}(Y)$; then $A \mu I(G(A))$ and since f is c-concave, we have $f^{-1}(A) \sigma f^{-1}(I(G(A)))$. From Theorem 4.3 and Theorem 4.9, it follows

$$
f^{-1}(I(G(A))) \sigma I\left(G\left(f^{-1}(G(A))\right)\right) \sigma I\left(G\left(G\left(f^{-1}(A)\right)\right)\right)=I\left(G\left(f^{-1}(A)\right) .\right.
$$

By the transitive property of preconvexity, we have $f^{-1}(A) \sigma I\left(G\left(f^{-1}(A)\right)\right.$. Hence from Theorem 4.8, f is $\beta^{*} c$-convex.

Theorem 4.11. Let $f: X \rightarrow Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ). Then the following things are equivalent:
(1) f is $\beta^{*} c$-convex.
(2) For each $U \in \beta C_{\mu}(Y), f^{-1}(U) \in \beta C_{\sigma}(X)$.
(3) $f(\beta C(A)) \subset \beta C(f(A))$ for all $A \subset X$.
(4) $\beta C\left(f^{-1}(B)\right) \subset f^{-1}(\beta C(B))$ for all $B \subset Y$.
(5) $f^{-1}(\beta I(B)) \subset \beta I\left(f^{-1}(B)\right)$ for all $B \subset Y$.

Proof. Straightforward.

References

[1] M. D. Guay, An introduction to preconvexity spaces, Acta Math. Hungar. 105 (2004), no. 3, 241-248.
[2] W. K. Min, Some results on preconvexity spaces, Bull. Korean Math. Soc. 45 (2008), no. 1, 39-44.
[3] _, A note on preconvexity spaces, Honam Math. J. 29 (2007), no 4, 589-595.
[4] , Semi-preconvex sets on preconvexity spaces, Commun. Korean Math. Soc. 23 (2008), no. 2, 251-256.
[5] S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press, 1970.
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail address: wkmin@kangwon.ac.kr

[^0]: Received September 8, 2008.
 2000 Mathematics Subject Classification. Primary 52A01.
 Key words and phrases. preconvexity, co-convex sets, convexity, $\beta^{*} c$-convex function, βc convex function, $\operatorname{co} \beta$-preconvex sets, β-preconvex sets.

