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A SIMPLE PROOF OF THE p-ADIC VERSION
OF THE SOBOLEV EMBEDDING THEOREM

Yong-Cheol Kim

Abstract. We give a simple proof of certain mapping properties of the
p-adic Riesz potential and Bessel potential, and the p-adic version of the
Sobolev embedding theorem obtained in [6].

1. Introduction

For a prime number p, let Qp denote the p-adic field, and let Zp = {0, 1, . . . ,
p− 1} and Q∗p = Qp \ {0}. By the standard p-adic analysis [8], we see that any
non-zero element x ∈ Qp is uniquely represented in the canonical form

(1.1) x =
∞∑

j=γ

xj pj , γ = γ(x) ∈ Z,

where xj ∈ Zp and xγ 6= 0. Here the integer γ = γ(x) is called the p-
adic valuation of x and we write γ = ordp(x) with convention ordp(0) = ∞.
Then it is well-known [1, 8] that the nonnegative function | · |p on Qp given
by |x|p = p−ordp(x) becomes a non-Archimedean norm on Qp and Qp is de-
fined as the completion of Q with respect to the norm | · |p. For d ∈ N,
let Qd

p denotes the vector space over Qp which consists of all points x =
(x1, x2, . . . , xd), x1, x2, . . . , xd ∈ Qp. If we define |x|p = max1≤j≤d |xj |p for
x ∈ Qd

p, then it is easy to see that | · |p is a non-Archimedean norm on Qd
p and

moreover Qd
p is a locally compact Hausdorff and totally disconnected Banach

space with respect to the norm | · |p. For γ ∈ Z, we denote the ball Bγ(a) with
center a ∈ Qd

p and radius pγ and its boundary Sγ(a) by

Bγ(a) = {x ∈ Qd
p : |x− a|p ≤ pγ},

Sγ(a) = {x ∈ Qd
p : |x− a|p = pγ},

respectively. Since Qd
p is a locally compact commutative group under addition,

it follows from the standard analysis that there exists a unique Haar measure
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dHx on Qd
p (up to positive constant multiple) which is translation invariant,

i.e., dH(x + a) = dHx. We normalize the measure dHx so that
∫

B0(0)

dHx ; |B0(0)|H = 1,

where |E|H denotes the Haar measure of a measurable subset E of Qd
p. From

this integral theory, it is easy to obtain that |Bγ(a)|H = pγd and |Sγ(a)|H =
pγd(1− p−d) for any a ∈ Qd

p.
In what follows, we say that a complex-valued measurable function f defined

on Qd
p is in Lq(Qd

p), 1 ≤ q ≤ ∞, if it satisfies

(1.2)
‖f‖Lq(Qd

p) ;
(∫

Qd
p

|f(x)|q dHx
)1/q

< ∞, 1 ≤ q < ∞,

‖f‖L∞(Qd
p) ; inf{α : |{x ∈ Qd

p : |f(x)| > α}|H = 0}} < ∞.

Here the integral in (1.2) is defined as

(1.3)

∫

Qd
p

|f(x)|q dHx = lim
N→∞

∫

BN (0)

|f(x)|q dHx

= lim
N→∞

∑

−∞<γ≤N

∫

Sγ(0)

|f(x)|q dHx,

if the limit exists. In general, the integral of a complex-valued measurable
function f on Qd

p is defined as
∫

Qd
p

f(x) dHx = lim
N→∞

∫

BN (0)

f(x) dHx = lim
N→∞

∑

−∞<γ≤N

∫

Sγ(0)

f(x) dHx,

if the limit exists. We now mention some of the previous works on harmonic
analysis on the p-adic field Qp as follows; Haran [2, 3] obtained the explicit
formula of Riesz potentials on Qp and developed an analytical potential theory
on the p-adic field Qp.

Let f(x) be a complex-valued function on Qd
p. Then we say that f is locally-

constant if for any x ∈ Qd
p there exists some integer `(x) ∈ Z such that

f(x + x′) = f(x), |x′|p ≤ p`(x).

We denote by E(Qd
p) the class of all locally-constant functions on Qd

p and we
denote by D(Qd

p) the subclass of all functions in E(Qd
p) with compact support.

We call a function in D(Qd
p) a test function on Qd

p. Since any nonzero p-adic
number x ∈ Qp with |x|p = p−γ has the unique representation as in (1.1), we
may define a function χp on Qp by

(1.4) χp(x) =

{∏−1
j=γ exp(2πixjp

j), γ < 0,

1, γ ≥ 0 or x = 0.
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Then it turns out (see [8]) that the function x → χp(〈ξ,x〉) for each fixed
ξ ∈ Qd

p is an additive character of the space Qd
p and the group Bγ(0), where

〈ξ,x〉 denotes the inner product of ξ,x ∈ Qd
p. For g ∈ D(Qd

p), we define the
p-adic Fourier transformation F[g] = g̃ of g by

g̃(ξ) =
∫

Qd
p

χp(〈ξ,x〉)g(x) dHx, ξ ∈ Qd
p.

Then F is a unitary isomorphism from D(Qd
p) to D(Qd

p) with the inversion
formula

g(x) =
∫

Qd
p

χp(−〈x, ξ〉)g̃(ξ) dHξ, g ∈ D(Qd
p),

and with the Parseval-Steklov equalities∫

Qd
p

g(x)h(x) dHx =
∫

Qd
p

g̃(ξ)h̃(ξ) dHξ,

∫

Qd
p

g(x)h̃(x) dHx =
∫

Qd
p

g̃(ξ)h(ξ) dHξ, g, h ∈ D(Qd
p).

Moreover, F is a unitary isomorphism from L2(Qd
p) to L2(Qd

p) with the inversion
formula

g(x) = lim
γ→∞

∫

Bγ(0)

χp(−〈x, ξ〉)g̃(ξ) dHξ in L2(Qd
p), g ∈ D(Qd

p),

and with the Parseval-Steklov equalities on L2(Qd
p), because D(Qd

p) is a dense
subset of L2(Qd

p) (see [8]).
Let M(Qd

p) denote the set of all complex-valued measurable functions on
Qd

p. For f, g ∈M(Qd
p), we define the convolution f ∗ g of f and g by

f ∗ g(x) =
∫

Qd
p

f(x− y)g(y) dHy, x ∈ Qd
p.

For a complex number z with Re(z) > 0, the p-adic Riesz kernel Rz and Bessel
kernel Bz of order z are defined by

Rz(x) =
1− p−z

1− pz−d
|x|−d+z

p , Bz(x) = F−1[(1 + |ξ|2p )−z/2 ](x), x ∈ Qd
p,

respectively; here, Rz(x) and Bz(x) are in fact multi-valued functions, and
so we take their values only in the principle branch to guarantee the single-
valuedness. In what follows, we shall always assume that the values of every
complex exponents are taken in the principle branch. Then we say that the
operators Iz and Jz given by

Iz(f)(x) = Rz ∗ f(x), Jz(f)(x) = Bz ∗ f(x), f ∈M(Qd
p),

are the p-adic Riesz potential and Bessel potential of order z, respectively.
In what follows, we shall use notations; given two quantities A and B, we

write A . B or B & A if there is a positive constant c (possibly depending on
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the dimension d and a prime number p to be given) such that A ≤ cB. We
also write A ∼ B if A . B and B . A. We denote by CF the characteristic
function of a measurable subset F of Qd

p. For a complex number z, we write
z = s + it where s, t ∈ R.

Originally, Theorem 1.1 and Theorem 1.4 were obtained in [6]. In contrast
to the method used in [6], we give a simple proof of them in this paper by using
the p-adic version of the Calderón-Zygmund decomposition technique.

Theorem 1.1. Let z be a complex number with 0 < Re(z) < d and let 1 ≤
q < r < ∞ satisfy 1/r = 1/q − Re(z)/d. If q > 1, then there exists a constant
C0 = C(p, q, r, d) > 0 such that

‖Iz(f)‖Lr(Qd
p) ≤ C0 ‖f‖Lq(Qd

p)

for any f ∈ Lq(Qd
p). Moreover, Iz is of weak type (1, r); that is to say, there is

a constant C1 = C1(p, r, d) > 0 such that

|{x ∈ Qd
p : |Iz(f)(x)| > λ}|H ≤ C1

λr
‖f‖r

L1(Qd
p), λ > 0

for any f ∈ L1(Qd
p).

Corollary 1.2. Let z be a complex number with 0 < Re(z) < d and let 1 ≤
q < r < ∞ satisfy 1/r = 1/q − Re(z)/d. If q > 1, then there exists a constant
C2 = C2(p, q, r, d) > 0 such that

‖Jz(f)‖Lr(Qd
p) ≤ C2 ‖f‖Lq(Qd

p)

for any f ∈ Lq(Qd
p). Moreover, Jz is of weak type (1, r); that is to say, there

is a constant C3 = C3(p, r, d) > 0 such that

|{x ∈ Qd
p : |Jz(f)(x)| > λ}|H ≤ C3

λr
‖f‖r

L1(Qd
p), λ > 0

for any f ∈ L1(Qd
p).

For 0 ≤ s < d and f ∈ L1
loc(Qd

p), we define the fractional maximal function
Ms(f) by

Ms(f)(x) = sup
γ∈Z

1
pγ(d−s)

∫

Bγ(x)

|f(y)| dHy, x ∈ Qd
p.

Corollary 1.3. Let 0 < s < d and let 1 ≤ q < r < ∞ satisfy 1/r = 1/q− s/d.
If q > 1, then there exists a constant c0 = c0(p, q, r, d) > 0 such that

‖Ms(f)‖Lr(Qd
p) ≤ c0 ‖f‖Lq(Qd

p)

for any f ∈ Lq(Qd
p). Moreover, Ms is of weak type (1, r); that is to say, there

is a constant c1 = c1(p, r, d) > 0 such that

|{x ∈ Qd
p : |Ms(f)(x)| > λ}|H ≤ c1

λr
‖f‖r

L1(Qd
p), λ > 0

for any f ∈ L1(Qd
p).
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For s ≥ 0 and 1 < q < ∞, we denote by Lq
s(Qd

p) the space of all gener-
alized functions u ∈ D′(Qd

p) such that F−1[(1 + |ξ|2p)s/2 ũ ] ∈ Lq(Qd
p) and we

call it the p -adic Sobolev space which has the norm ‖u‖Lq
s(Qd

p) = ‖F−1[(1 +
|ξ|2p)s/2 ũ ]‖Lq(Qd

p). Then we obtain the p-adic analogue of the Sobolev embed-
ding theorem.

Theorem 1.4. (a) Let 1 < q ≤ r < ∞. If s ≥ 0 is a real number satisfying
1/q− 1/r = s/d, then the space Lq

s(Qd
p) is continuously embedded into Lr(Qd

p).
(b) If s > d/q and q > 1, then the space Lq

s(Qd
p) is continuously embedded

into L∞(Qd
p) and any element f ∈ Lq

s(Qd
p) can be modified on a set E ⊂ Qd

p

with |E|H = 0 so that the resulting function is uniformly continuous.

2. Preliminary estimates and the proof of main theorems

In this section, we furnish several useful propositions and lemma and prove
the main theorems.

Proposition 2.1. If m is a complex-valued function on R+ with
∞∑

γ=0

|m(p−γ)|p−γd < ∞,

then we have that for any x ∈ Qd
p \ {0},

∫

Qd
p

χp(−〈x, ξ〉)m(|ξ|p) dHξ =
1− p−d

|x|dp

∞∑
γ=0

p−γdm(p−γ |x|−1
p )− 1

|x|dp
m(p |x|−1

p ).

Proof. It easily follows from (1.4) and the change of variable that
∫

Bγ(0)

χp(−〈x, ξ〉) dHξ = pγd CB−γ(0)(x)

for any γ ∈ Z. Thus for γ ∈ Z we have that
(2.1)∫

Sγ(0)

χp(−〈x, ξ〉) dHξ = pγd CB−γ(0)(x)− p(γ−1)d CB−γ+1(0)(x)

= pγd(1− p−d)CB−γ(0)(x)− p(γ−1)d CS−γ+1(0)(x).

Hence by (2.1) and simple calculation we obtain that
∫

Qd
p

χp(−〈x, ξ〉)m(|ξ|p) dHξ = lim
N→∞

N∑
γ=−∞

m(pγ)
∫

Sγ(0)

χp(−〈ξ,x〉) dHx

=
1− p−d

|x|dp

∞∑
γ=0

p−γdm(p−γ |x|−1
p )− 1

|x|dp
m(p |x|−1

p ).

Therefore we complete the proof. ¤
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Lemma 2.2. If z is a complex number with 0 < Re(z) < d, then we have;

(a) |Bz(x)|≤ |1− pz−d|
|1− p−z|

pRe(z) − 2pRe(z)−d + 1
pRe(z)(1− pRe(z)−d)

|Rz(x)|, x ∈ Qd
p \ {0}.

(b) |Bz(x)|≤ pRe(z) − 2pRe(z)−d + 1
pRe(z)(1− pRe(z)−d)

1

|x|d−Re(z)
p

CB0(0)(x)+
2
|x|dp

CQd
p\B0(0)(x).

Proof. (a) It easily follows from Proposition 2.1 that

|Bz(x)| ≤ 1− p−d

|x|dp

∞∑
γ=0

p−γd

(1 + p−2γ |x|−2
p )Re(z)/2

+
1

|x|dp(1 + p2|x|−2
p )Re(z)/2

≤ (1− p−d)
∞∑

γ=logp(|x|p)

p−γ(d−Re(z)) +
1

pRe(z)

1

|x|d−Re(z)
p

=
1− p−d

1− pRe(z)−d

1

|x|d−Re(z)
p

+
1

pRe(z)

1

|x|d−Re(z)
p

=
|1− pz−d|
|1− p−z|

pRe(z) − 2pRe(z)−d + 1
pRe(z)(1− pRe(z)−d)

|Rz(x)|.

(b) The second part follows from calculation similar to (a) in two cases
|x|p ≤ 1 or |x|p > 1. Therefore we complete the proof. ¤

Proposition 2.3. Let b ∈ L1(Qd
p) be supported in a p-adic ball B and satisfy

∫

Qd
p

b(x) dHx = 0.

If q is a real number with q > 0, then we have that
∫

Qd
p\B

|Iz(b)(x)|q dHx = 0.

Proof. Since | · |p is a non-Archimedean norm on Qd
p and b is supported in B,

|x − y|p = |x|p for x ∈ Qd
p \ B and y ∈ B. By the cancellation property of b

we easily obtain that

|Iz(b)(x)| ≤ |1− p−z|
|1− pz−d|

∫

Qd
p

∣∣|x− y|−d+z
p − |x|−d+z

p

∣∣ |b(y)| dHy = 0,

provided that x ∈ Qd
p \B. This implies the required result. ¤

Lemma 2.4. Let z be a complex number satisfying 0 < Re(z) < d. If 1 ≤ q <
d/Re(z), then there exists a constant C4 = C4(d, p, q, z) > 0 such that

‖Iz(f)‖L∞(Qd
p) ≤ C4 ‖f‖q Re(z)/d

Lq(Qd
p)

‖f‖1−q Re(z)/d

L∞(Qd
p)

for any f ∈ Lq(Qd
p) ∩ L∞(Qd

p).
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Proof. Take any f ∈ Lq(Qd
p) ∩ L∞(Qd

p). Then we observe that for any γ0 ∈ Z,

(2.2)

|Iz(f)(x)| ≤ ‖f‖L∞(Qd
p)

∫

Bγ0 (0)

|y|Re(z)−d
p dHy

+ ‖f‖Lq(Qd
p)

(∫

Qd
p\{Bγ0 (0)}

|y|(Re(z)−d)q′
p dHy

)1/q′

= ‖f‖L∞(Qd
p)(1− p−d)

∑

−∞<γ≤γ0

pγ(Re(z)−d)pγd

+ ‖f‖Lq(Qd
p)

(
(1− p−d)

∞∑
γ=γ0+1

pγ(Re(z)−d)q′pγd

)1/q′

= ‖f‖L∞(Qd
p)

1− p−d

1− p−Re(z)
pRe(z)γ0

+ ‖f‖Lq(Qd
p)

(1− p−d)pd−(d−Re(z))q′

1− pd−(d−Re(z))q′ p[d−(d−Re(z))q′]γ0 .

We now choose some γ0 ∈ Z in (2.2) so that

pγ0=
( ‖f‖Lq(Qd

p)

‖f‖L∞(Qd
p)

)q/d

(1−p−d)−1/d(1−p−Re(z))q/d

(
pd−(d−Re(z))q′

1− pd−(d−Re(z))q′

)(q−1)/d

.

Then it follows from (2.2) and simple computation that

‖Iz(f)‖L∞(Qd
p) ≤ C4 ‖f‖q Re(z)/d

Lq(Qd
p)

‖f‖1−q Re(z)/d

L∞(Qd
p)

,

where the constant C4 is explicitly given by

C4 = 2(1−p−d)1−Re(z)/d(1−p−Re(z))−1+q Re(z)/d

(
pd−(d−Re(z))q′

1− pd−(d−Re(z))q′

) (q−1)Re(z)
d

.

Hence we complete the proof. ¤
Proof of Theorem 1.1. First, we prove that the Riesz potential Iz is of weak
type (1, r). We observe that if q = 1, then r = d/(d − Re(z)). Take any
f ∈ L1(Qd

p). For this estimate, we employ the p-adic version [4] of the Calderón-
Zygmund decomposition of f with aperture µ > 0 as follows;

f = g + b ; g +
∞∑

k=1

bk,

where {Bk : k ∈ N } is a countable family of pairwise disjoint p-adic balls so
that

(a) |{x ∈ Qd
p : |g(x)| > pdµ}|H = 0,

(b) bk(x) = 0 for any x ∈ Qd
p \Bk and

∫

Qd
p

bk(x) dHx = 0,

(c)
∑∞

k=1 |Bk|H ≤ 1
µ
‖f‖L1(Qd

p),
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(d) ‖g‖L1(Qd
p) +

∞∑

k=1

‖bk‖L1(Qd
p) ≤ 3 ‖f‖L1(Qd

p).

We may assume that ‖f‖L1(Qd
p) = 1 by normalization. Applying Lemma 2.4

with q = 1, we obtain that

‖Iz(g)‖L∞(Qd
p) ≤ C4 ‖f‖Re(z)/d

L1(Qd
p)
‖g‖1−Re(z)/d

L∞(Qd
p)

≤ C4 3Re(z)/dpd−Re(z)µ1−Re(z)/d

= C4 3Re(z)/dpd−Re(z)µ1/r.

If we set λ = 2C4 3Re(z)/dpd−Re(z)µ1/r ; C
1/r
1 µ1/r, then we have that

|{x ∈ Qd
p : |Iz(f)(x)| > λ}|H ≤ |{x ∈ Qd

p :
∑

k∈N
|Iz(bk)(x)| > λ/2}|H .

If we set Ω = ∪k∈NBk, then by (c) we get that |Ω|H ≤ 1/µ = C1/λr. It also
follows from Proposition 2.3 that

∣∣{x ∈ Qd
p \ Ω :

∑

k∈N
|Iz(bk)(x)| > λ/2}∣∣1/r

H

≤ 2
λ

∑

k∈N

(∫

Qd
p\Bk

|Iz(bk)(x)|r dHx
)1/r

= 0.

Therefore we conclude that |{x ∈ Qd
p : |Iz(f)(x)| > λ}|H ≤ C1/λr.

For q > 1, we may assume that ‖f‖Lq(Qd
p) = 1 by normalization. Then we

have that

(2.3) ‖Iz(f)‖r
Lr(Qd

p) = r

∫ ∞

0

λr−1 ω(λ) dλ,

where ω(λ) = |{x ∈ Qd
p : |Iz(f)(x)| > λ}|H for λ > 0. In order to estimate

ω(λ), we split f into f = g + h where g = f · Cν(µ) for ν(µ) = {x ∈ Qd
p :

|f(x)| > µ} and µ > 0. By Lemma 2.4, we obtain that

‖Iz(h)‖L∞(Qd
p) ≤ C4 ‖h‖q Re(z)/d

Lq(Qd
p)

‖h‖1−q Re(z)/d

L∞(Qd
p)

≤ C4 µ1−q Re(z)/d = C4 µq/r.

We now choose µ > 0 so that λ/2 = C4 µq/r. From the weak type (1, r0)-
estimate of Iz with r0 = d/(d− Re(z)) in the above, we see that

(2.4) ω(λ) ≤ |{x ∈ Qd
p : |Iz(g)(x)| > λ/2}|H ≤ 2r0C1

‖g‖r0
L1(Qd

p)

λr0
.

Thus it follows from (2.3), (2,4), and the p-adic versions of integral Minkowski’s
inequality and changing the order of integration that

‖Iz(f)‖r
Lr(Qd

p) ≤ r2r0C1

∫ ∞

0

λr−1−r0

(∫

ν(µ)

|f(x)| dHx
)r0

dλ

= q2rC1C
r−r0
4

∫ ∞

0

µq−1−qr0/r

(∫

ν(µ)

|f(x)| dHx
)r0

dµ



A SIMPLE PROOF OF THE p-ADIC VERSION 35

≤ q2rC1C
r−r0
4

(∫

Qd
p

(∫ |f(x)|

0

µq−1−qr0/r dµ

)1/r0

|f(x)| dHx
)r0

≤ q2rC1C
r−r0
4

(∫

Qd
p

|f(x)|q dHx
)r0

= q2rC1C
r−r0
4 .

Therefore we complete the proof. ¤

Proof of Corollary 1.2 and Corollary 1.3. It easily follows from Theorem 1.1,
Lemma 2.2, and the relation Ms(f) . Is(|f |) to be obtained by simple com-
putation. ¤

Proof of Theorem 1.4. (a) Let f ∈ Lq
s(Qd

p) be given. For the proof, it suffices
to prove that

(2.5) ‖f‖Lr(Qd
p) ≤ C ‖F−1[(1 + |ξ|2p)s/2 f̃ ]‖Lq(Qd

p).

If s = 0, then we have q = r, and so the result is obvious. Thus we may
assume that s > 0. If we set g(x) = F−1[(1 + |ξ|2p)s/2 f̃ ](x), then proving (2.5)
is equivalent to showing the estimate

(2.6) ‖F−1[(1 + |ξ|2p)−s/2 g̃ ]‖Lr(Qd
p) ≤ C ‖g‖Lq(Qd

p).

We observe in (2.6) that F−1[(1 + |ξ|2p)−s/2 g̃ ](x) = Bs ∗ g(x). Since 1 < q <
r < ∞ and 1/q − 1/r = s/d implies that 0 < s < d, the estimate (2.6) can
immediately be obtained from Corollary 1.2.

(b) If s > d/q and q > 1, then we have d − s < d(1 − 1/q), and thus
(d− s)q′ < d where q′ is the dual exponent of q. Then by (b) of Lemma 2.2 we
have that Bs ∈ Lq′(Qd

p); indeed,
∫

Qd
p

|Bs(x)|q′ dHx

≤ ps − 2ps−d + 1
ps(1− ps−d)

∫

B0(0)

1

|x|(d−s)q′
p

dHx + 2
∫

Qd
p\B0(0)

1

|x|dq′
p

dHx

=
ps − 2ps−d + 1
ps(1− ps−d)

(1− p−d)
∞∑

γ=0

p−γ[d−(d−s)q′] + 2(1− p−d)
∞∑

γ=1

p−γd(q′−1)

=
ps − 2ps−d + 1
ps(1− ps−d)

1− p−d

1− p(d−s)q′−d
+

2(1− p−d)pd(1−q′)

1− pd(1−q′) < ∞.

Let f ∈ Lq
s(Qd

p) be given. For our proof, as in the above we have only to prove
that

(2.7) ‖Bs ∗ g(x)‖L∞(Qd
p) ≤ C ‖g‖Lq(Qd

p),

where g(x) = F−1[(1 + |ξ|2p)s/2 f̃ ](x). Since Bs ∈ Lq′(Qd
p), the estimate (2.7)

can be obtained by applying the p-adic version of Hölder’s inequality.



36 YONG-CHEOL KIM

If τy denotes the translation operator defined by τyf(x) = f(x + y) for
y ∈ Qd

p, then it easily follows from (2.7) that

‖τyf − f‖L∞(Qd
p) = ‖F−1[(1 + |ξ|2p)−s/2(τ̃yg − g̃) ]‖L∞(Qd

p) ≤ C ‖τyg − g‖Lq(Qd
p).

Thus we conclude that lim|y|p→0 ‖τyf − f‖L∞(Qd
p) = 0, because g ∈ Lq(Qd

p).
Hence this implies that f can be modified on a set E ⊂ Qd

p with |E|H = 0 so
that the resulting function is continuous. ¤
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