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ON NILPOTENCE INDICES OF SIGN PATTERNS

Craig Erickson and In-Jae Kim

Abstract. The work in this paper was motivated by [3], where Eschen-
bach and Li listed four 4 by 4 sign patterns, conjectured to be nilpotent
sign patterns of nilpotence index at least 3. These sign patterns with
no zero entries, called full sign patterns, are shown to be potentially
nilpotent of nilpotence index 3. We also generalize these sign patterns
of order 4 so that we provide classes of n by n sign patterns of nilpo-
tence indices at least 3, if they are potentially nilpotent. Furthermore
it is shown that if a full sign pattern A of order n has nilpotence index
k with 2 ≤ k ≤ n − 1, then sign pattern A has nilpotent realizations of
nilpotence indices k, k + 1, . . . , n. Hence, the four 4 by 4 sign patterns in
[3, page 91] also allow nilpotent realizations of nilpotence index 4.

1. Introduction

A sign pattern is a matrix with entries in {+,−, 0}. A sign pattern with no
zero entries is said to be a full sign pattern. The sign pattern class Q(A) of
an m by n sign pattern A = [αij ] is the set of m by n real matrices with sign
pattern A, i.e.,

Q(A) = {A = [aij ] ∈ Rm×n | sgn(aij) = αij for all i, j}.
Each matrix in Q(A) is called a realization of A. An n by n matrix A is
nilpotent if there exists a positive integer k such that Ak = O, or equivalently
the characteristic polynomial of A is xn. The minimum of such a positive
integer k is the nilpotence index of A. If an n by n sign pattern A has a
nilpotent realization, then we say that A is potentially nilpotent. The minimum
of the nilpotence index of a nilpotent realization of A is the nilpotence index
of A. It is clear that the nilpotence index of a potentially nilpotent full sign
pattern is at least 2.

The nilpotence indices of realizations of a sign pattern have been studied in
the literature (see, for example, [3, 4, 5]). However, the nilpotence index of a
potentially nilpotent sign pattern is introduced in this paper for the first time.
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By the notation N` in [3, 4], a nonzero sign pattern A of order n (n ≥ 2) is
potentially nilpotent of nilpotence index k (2 ≤ k ≤ n) if A 6∈ Nk−1 and A has
a nilpotent realization of nilpotence index k. In order to determine if a sign
pattern of order n is potentially nilpotent, one needs to solve a system of n
non-linear polynomial equations in several variables, derived from setting all the
coefficients of the characteristic polynomial of a realization equal to 0. Hence,
such recognition problem is not an easy task, and thereby to determine the
nilpotence index or to determine all nilpotence indices of nilpotent realizations
that the sign pattern allows is much harder than the problem of recognizing
potentially nilpotent sign patterns.

In [3], Eschenbach and Li almost finished classifying 4 by 4 sign patterns
with nilpotence index 2. There are four full sign patterns of order 4 in [3,
page 91] whose nilpotence indices need to be determined:

(1)

A1 =




+ + + +
− − − −
− − + −
− − − +


 , A2 =




+ + + +
− − − −
− − + −
− − + +




A3 =




+ + + +
− − − −
− + − +
− + − +


 , A4 =




+ + + +
− − − −
+ − − +
+ − − +


 .

In Section 3 it is shown that these four sign patterns of order 4 are potentially
nilpotent of nilpotence index 3. Furthermore, we show in Section 2 that if a
full sign pattern of order n has nilpotence index k with 2 ≤ k ≤ n−1, then the
sign pattern allows nilpotent realizations of nilpotence indices k, k + 1, . . . , n.
Hence, it is shown that the four 4 by 4 sign patterns in (1) also allow nilpotent
realizations of nilpotence index 4.

2. Nilpotence indices allowed by a full sign pattern

We first find necessary conditions for a full sign pattern to be potentially
nilpotent. These conditions are also necessary for a sign pattern (not necessarily
full) to be inertially arbitrary (see, for example, [2], [5, Theorem 1.1]).

Proposition 2.1. Let A = [αij ] be a potentially nilpotent full sign pattern of
order n ≥ 2. Then A has at least one + entry and one − entry on the main
diagonal and there are indices s 6= t such that nonzero entries αst and αts have
opposite sign.

Proof. Since each nilpotent realization of A has trace 0, the existence of at
least one + entry and one − entry on the main diagonal follows.
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Next, suppose that for each s 6= t, αst and αts have the same sign. Let
A = [aij ] ∈ Q(A). Then the (s, s)-entry of A2 is

(A2)ss =
n∑

k=1

askaks = a2
ss +

∑

k 6=s

askaks > 0.

This implies that there are no nilpotent realizations of A, which is a contradic-
tion. Hence, the result follows. ¤

Proposition 2.1 also can obtained from [5, Theorems 1.1, 1.2]. Note that
the full sign patterns in (1) satisfy the necessary conditions in Proposition 2.1.
For potentially nilpotent sign patterns with zero entries, Proposition 2.1 is
not necessarily true. For example, any strictly upper triangular sign pattern
is potentially nilpotent, but it does not satisfy two necessary conditions in
Proposition 2.1.

We now show that by perturbing the Jordan canonical form of a nilpotent
realization of a full sign pattern A, the nilpotence index k of A, with 2 ≤ k ≤
n− 1, necessarily implies that A has a nilpotent realizations of each nilpotence
index greater than k.

Let Jk denote the 0-Jordan block of order k, i.e.,

Jk =




0 1 0 · · · 0
0 1 0 · · · 0

. . .
...

O
. . . . . . 0

0 1
0




k×k

.

We use Eij to denote the square matrix of an appropriate order that has exactly
one nonzero entry, equal to 1, in the (i, j)-position.

Lemma 2.2. For positive integers s, t with s ≥ t, let J = Js ⊕ Jt. Then, for
i = 1, . . . , t and a nonzero real number ε, J + εEs,s+i is a nilpotent matrix of
nilpotence index s + t− (i− 1). In particular, J + εEs,s+t has nilpotence index
s + 1 and J + εEs,s+1 has nilpotence index s + t.

Proof. Let Jε(s + i) = J + εEs,s+i. Then, for k = 1, . . . , s,

[Jε(s + i)]k = Jk + ε(Es−k+1,s+i + Es−k+2,s+i+1 + · · ·+ E`1,`2),

where (`1, `2) ∈ {(s, s + i + (k − 1)), (s + t − k − i + 1, s + t)}. Since Js = O,
we have

[Jε(s + i)]s = ε(E1,s+i + E2,s+i+1 + · · ·+ E`1,`2),
where (`1, `2) ∈ {(s, 2s+ i−1), (t− i+1, s+ t)}. Since, for an s by t matrix M ,
the product MJt is the matrix obtained from M by shifting columns 1, . . . , t−1
to their next columns and replacing the first column by zero column,

(2) [Jε(s + i)]s[Jε(s + i)]` = [ε(E1,s+i + E2,s+i+1 + · · ·+ E`1,`2)]J
`
t 6= O
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for ` = 1, . . . , t− i, where (`1, `2) ∈ {(s, 2s + i− 1), (t− i + 1, s + t)}. However,
the product (2) is the zero matrix of order s + t for ` = t − i + 1. Therefore,
the nilpotence index of Jε(s + i) is (s + t)− (i− 1) for i = 1, . . . , t. ¤

Remark 2.3. Let m, s and t be positive integers with m, t ≤ s. Then, by
replacing s by m in Lemma 2.2 and then mimicking the proof of Lemma 2.2, it
can be shown that the nilpotence index of (Js ⊕ Jt) + εEm,s+j is max{i + (t−
j + 1), s} for any nonzero real number ε.

Theorem 2.4. Let A be an n by n potentially nilpotent full sign pattern. If
A has a nilpotent realization of nilpotence index ` with 2 ≤ ` ≤ n− 1, then A
also has a nilpotent realization of nilpotence index ` + 1.

Proof. Suppose that A is a nilpotent realization of A of nilpotence index `
with 2 ≤ ` ≤ n − 1. Since the nilpotence index ` is less than n, there exists a
nonsingular matrix S of order n such that

S−1AS = J`1 ⊕ · · · ⊕ J`p ,

where `1 = ` ≥ `2 ≥ · · · ≥ `p ≥ 1 and `1 + · · ·+ `p = n for some positive integer
p ≥ 2. By Lemma 2.2, it follows that

(3) S−1AS + εE`1,`1+`2

is a nilpotent matrix of nilpotence index `1 + 1 = ` + 1 for any nonzero real
number ε. Let

B = A + εSE`1,`1+`2S
−1.

Since B is similar to the matrix in (3), B is a nilpotent matrix of nilpotence
index ` + 1. Note that B is in Q(A) for sufficiently small ε. Hence, the result
follows. ¤

By using Theorem 2.4 repeatedly, we get the following result.

Corollary 2.5. Let A be an n by n potentially nilpotent full sign pattern of
nilpotence index k. Then, for each ` ∈ {k, k + 1, . . . , n}, A allows a nilpotent
realization of nilpotence index `.

The following example shows that Corollary 2.5 is not necessarily true for
a sign pattern that is not full. For an n by n sign pattern A, if A ∈ Q(A)
is nilpotent of nilpotence index k, then it is clear that cA and DAD−1 are in
Q(A) and nilpotent of nilpotence index k for some positive real number c and
a diagonal matrix D with main diagonal entries all positive.

Example 2.6. Let

A =




+ + 0
− − 0
0 0 0


 .
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Then it can be verified that the realization of A



1 1 0
−1 −1 0

0 0 0




is a nilpotent matrix of nilpotence index 2. Note that any nilpotent realization
of A is a direct sum of a 2 by 2 nilpotent matrix and the 1 by 1 zero matrix.
Hence, every nilpotent realization of A has nilpotence index 2.

We also note that there is a square sign pattern such that it is not full but
having consecutive nilpotence indices.

Example 2.7. Let

A =




+ + + +
− − − −
0 0 + +
0 0 − −


 .

We consider the following realization A of A

A =




1 1 a b
−1 −1 −c −d

0 0 1 1
0 0 −1 −1


 ,

where a, b, c, d > 0. Then we have

A2 =




0 0 2a− b− c a− d
0 0 −a + d −b− c + 2d
0 0 0 0
0 0 0 0


 ,

A3 =




0 0 a− b− c + d a− b− c + d
0 0 −a + b + c− d −a + b + c− d
0 0 0 0
0 0 0 0


 ,

and A4 = O. Thus, 2a = b + c = 2d implies A has nilpotence index 2, and
a 6= d and a + d = b + c imply that A has nilpotence index 3. For all other
positive values of a, b, c and d, A is of nilpotence index 4.

3. Potentially nilpotent sign patterns of indices at least 3

In this section we provide classes of sign patterns A such that if A is poten-
tially nilpotent, then its nilpotence index is at least 3.
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Theorem 3.1. For n ≥ 3, let

A =




+ + + · · · +
− − − · · · −
− −
...

... B
− −




n×n

,

where the main diagonal entries of B are in {+, 0}. Suppose that A is poten-
tially nilpotent. Then the nilpotence index of A is at least 3.

Proof. Suppose to the contrary that there is a nilpotent A = [aij ] ∈ Q(A) of
nilpotence index 2. Since tr(A) = 0, |a22| ≥ |a11|. Since A has a nilpotence
index 2, A2 = O. Note that (A2)11 = 0 implies a2

11 > |a12a21|, and (A2)22 = 0
implies |a12a21| > a2

22. This implies that a2
11 > |a12a21| > a2

22, which contra-
dicts that |a22| ≥ |a11|. Hence, the result follows. ¤

Theorem 3.2. For n ≥ 3, let

A =




+ + + · · · +
− − − · · · −

B C




n×n

,

where B is
[ − · · · −

+ · · · +

]T

or its negation. Suppose that A is potentially

nilpotent. Then the nilpotence index of A is at least 3.

Proof. We first consider sign pattern A with B =
[
− · · · −
+ · · · +

]T

. Suppose to
the contrary that there is a nilpotent A = [aij ] ∈ Q(A) of nilpotence index
2. By using a positive scaling and then a positive diagonal similarity, we may
assume that

A =




1 1 1 · · · 1
−a21 −a22 −a23 · · · −a2n

−a31 a32 ∗ · · · ∗
...

...
. . .

−an1 an2 ∗ · · · ∗




,

where all specified aij > 0. Note that (A2)12 = 0 implies a22 > 1, and (A2)21 =
0 implies a22 < 1. Hence, the result follows.

The case when B =
[

+ · · · +
− · · · −

]T

can be proved similarly by considering

(A2)12 = 0 and (A2)21 = 0. ¤

Remark 3.3. The statements in Theorems 3.1 and 3.2 can be rephrased more
generally by replacing (1, 2)- and (2, 1)-block of the sign patterns by blocks
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with some zeros, since the contradictions in the proofs involve only the entries
(A2)ij with 1 ≤ i, j ≤ 2. For example, some nonzero entries in (1, 2)- and
(2, 1)-block of A in Theorem 3.1 can be replaced by zero entries as long as
the ith row of the (1, 2)-block and the ith column of the (2, 1)-block are not
combinatorially orthogonal (see [1, page 267]) for i = 1, 2.

We conclude this paper by showing that the full sign patterns in (1) are
potentially nilpotent of nilpotence index 3. We first show that all Ai’s in
(1) are potentially nilpotent by listing nilpotent realizations Ai ∈ Q(Ai) of
nilpotence index 3:

A1 =




13 13 12 1
−15 −15 −1 −14
−2 −2 1 −3
−1 −1 −2 1


 , A2 =




1 −13+
√

4201
16 1 323+

√
4201

112

−1 13−√4201
16 −1 −323−√4201

112

−1 13−√4201
16 2 −181+

√
4201

56

−1 13−√4201
16 7 −61+

√
4201

16




A3 =




1 1 21 21
4

−1 −1 −21 − 21
4

−1 3 −21 63
4

−1 4 −21 21


 , A4 =




1 1 19
3 19

−1 −1 − 19
3 −19

1 −3 −19 19
1 −4 − 76

3 19


 .

Note that the sign patterns A1 and A2 in (1) satisfy the conditions in The-
orem 3.1, and the sign patterns A3 and A4 in (1) satisfy the conditions in
Theorem 3.2. Hence, the following result is a direct consequence of the above
list, Corollary 2.5 and Theorems 3.1, 3.2.

Corollary 3.4. The 4 by 4 full sign patterns in (1) are potentially nilpotent of
nilpotence index 3, which also allow nilpotent realizations of nilpotence index
4.
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