DOI QR코드

DOI QR Code

Optimization of Reflectron for Kinetic and Mechanistic Studies with Multiplexed Multiple Tandem (MSn) Time-of-flight Mass Spectrometry

  • Published : 2010.01.20

Abstract

Photoexcitation of a precursor ion inside a cell floated at high voltage installed in a tandem time-of-flight (TOF) mass spectrometer provides triple tandem mass spectrometric information and allows kinetic and mechanistic studies. In this work, the factors affecting, or downgrading, the performance of the technique were identified. Ion-optical and computational analyses showed that an optimum instrument could be designed by utilizing a reflectron with linear-plus-quadratic potential inside. Theoretical predictions were confirmed by tests with instruments built with different ion-optical layout. With optimized instruments, masses of intermediate ions in the consecutive dissociation of a precursor ion could be determined with the maximum error of $\pm5$ Da. We also observed excellent agreement in dynamical parameters (critical energy and entropy) for the dissociation of a model peptide ion determined by instruments with different ion-optical layout operated under optimum conditions. This suggests that these parameters can be determined reliably by the kinetic method developed previously when properly designed and operated tandem TOF instruments are used.

Keywords

References

  1. Hillenkamp, F.; Karas, M. In MALDI MS. A Practical Guide to Instrumentation, Methods and Applications; Hillenkamp, F., Peter-Katalinić, J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2007; pp 1-28.
  2. Knochenmuss, R.; Zenobi, R. Chem. Rev. 2003, 103, 441. https://doi.org/10.1021/cr0103773
  3. Dreisewerd, K. Chem. Rev. 2003, 103, 395. https://doi.org/10.1021/cr010375i
  4. Knochenmuss, R. Analyst 2006, 131, 966. https://doi.org/10.1039/b605646f
  5. Cotter, R. J. Time-of-Flight Mass Spectrometry; American Chemical Society: Washington, 1997; pp 48-53.
  6. Rockwood, A. L. Proceedings of the 34th Annual Conference on Mass Spectrometry and Allied Topics; Cincinnati, June 8-13, 1986.
  7. Hettick, J. M.; McCurdy, D. L.; Barbacci, D. C.; Russell, D. H. Anal. Chem. 2001, 73, 5378. https://doi.org/10.1021/ac0102157
  8. Cotter, R. J.; Gardner, B. D.; Iltchenko, S.; English, R. D. Anal. Chem. 2004, 76, 1976. https://doi.org/10.1021/ac0349431
  9. Vestal, M.; Juhasz, P. J. Am. Soc. Mass Spectrom. 1998, 9, 892. https://doi.org/10.1016/S1044-0305(98)00069-5
  10. Spengler, B. J. Mass Spectrom. 1997, 32, 1019. https://doi.org/10.1002/(SICI)1096-9888(199711)32:10<1019::AID-JMS595>3.0.CO;2-G
  11. Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. Anal. Bioanal. Chem. 2003, 376, 952. https://doi.org/10.1007/s00216-003-2057-0
  12. Oh, J. Y.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2004, 15, 1248. https://doi.org/10.1016/j.jasms.2004.05.003
  13. Moon, J. H.; Yoon, S. H.; Kim, M. S. Bull. Korean Chem. Soc. 2005, 26, 763. https://doi.org/10.5012/bkcs.2005.26.5.763
  14. Kaufmann, R.; Chaurand, P.; Kirsch, D.; Spengler, B. Rapid Commun. Mass Spectrom. 1996, 10, 1199. https://doi.org/10.1002/(SICI)1097-0231(19960731)10:10<1199::AID-RCM643>3.0.CO;2-F
  15. Yoon, S. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2007, 18, 1729. https://doi.org/10.1016/j.jasms.2007.07.010
  16. Ballard, K. D.; Gaskell, S. J. Int. J. Mass Spectrom. Ion Processes 1991, 111, 173. https://doi.org/10.1016/0168-1176(91)85054-P
  17. Shin, Y. S.; Moon, J. H.; Kim, M. S. Anal. Chem. 2008, 80, 9700. https://doi.org/10.1021/ac801675r
  18. Moon, J. H.; Yoon, S. H.; Kim, M. S. J. Phys. Chem. B 2009, 113, 2071. https://doi.org/10.1021/jp810077e
  19. Dahl, D. A. SIMION 3D, version 7.0, Idaho National Labs, Idaho Falls, ID, 2000.
  20. Ambihapathy, K.; Yalcin, T.; Leung, H.; Harrison, A. G. J. Mass Spectrom. 1997, 32, 209. https://doi.org/10.1002/(SICI)1096-9888(199702)32:2<209::AID-JMS466>3.0.CO;2-C
  21. Yoon, S. H.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2009, 20, 1522. https://doi.org/10.1016/j.jasms.2009.04.008
  22. Holbrook, K. A.; Pilling, M. J.; Robinson, S. H. Unimolecular Reaction; Wiley: Chichester, U. K., 1996; pp 39-78.
  23. Baer, T.; Mayer, P. M. J. Am. Soc. Mass Spectrom. 1997, 8, 103. https://doi.org/10.1016/S1044-0305(96)00212-7

Cited by

  1. Dissociation kinetics of singly protonated leucine enkephalin investigated by time-resolved photodissociation tandem mass spectrometry vol.21, pp.7, 2010, https://doi.org/10.1016/j.jasms.2010.03.025
  2. Expansion Cooling in the Matrix Plume is Under-Recognized in MALDI Mass Spectrometry vol.22, pp.6, 2011, https://doi.org/10.1007/s13361-011-0115-y
  3. Ion Yields for Some Salts in MALDI: Mechanism for the Gas-Phase Ion Formation from Preformed Ions vol.23, pp.1, 2012, https://doi.org/10.1007/s13361-011-0278-6
  4. Degree of Ionization in MALDI of Peptides: Thermal Explanation for the Gas-Phase Ion Formation vol.23, pp.8, 2012, https://doi.org/10.1007/s13361-012-0406-y
  5. Reproducibility of Temperature-Selected Mass Spectra in Matrix-Assisted Laser Desorption Ionization of Peptides vol.84, pp.16, 2012, https://doi.org/10.1021/ac3014077
  6. A Simple Method for Quantification of Peptides and Proteins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry vol.84, pp.23, 2012, https://doi.org/10.1021/ac302807u
  7. Why do the Abundances of Ions Generated by MALDI Look Thermally Determined? vol.24, pp.11, 2013, https://doi.org/10.1007/s13361-013-0717-7
  8. Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.907
  9. Spectral Reproducibility and Quantification of Peptides in MALDI of Samples Prepared by Micro-Spotting vol.25, pp.8, 2014, https://doi.org/10.1007/s13361-014-0919-7
  10. Formation of gas-phase peptide ions and their dissociation in MALDI: Insights from kinetic and ion yield studies vol.34, pp.2, 2014, https://doi.org/10.1002/mas.21427
  11. Relative Quantification in Imaging of a Peptide on a Mouse Brain Tissue by Matrix-Assisted Laser Desorption Ionization vol.86, pp.10, 2014, https://doi.org/10.1021/ac500911x
  12. Investigations of Some Liquid Matrixes for Analyte Quantification by MALDI vol.26, pp.10, 2015, https://doi.org/10.1007/s13361-015-1202-2
  13. Quick quantification of proteins by MALDI vol.50, pp.3, 2015, https://doi.org/10.1002/jms.3567
  14. A Thermal Mechanism of Ion Formation in MALDI vol.8, pp.1, 2015, https://doi.org/10.1146/annurev-anchem-081413-024102
  15. Quantitative transfer of polar analytes on a solid surface to a liquid matrix in MALDI profiling vol.51, pp.12, 2016, https://doi.org/10.1002/jms.3886
  16. Quantification and Profiling of Phosphatidylcholine in Mouse Brain Tissue by Matrix-assisted Laser Desorption Ionization with a Liquid Matrix vol.38, pp.6, 2017, https://doi.org/10.1002/bkcs.11142
  17. Current literature in mass spectrometry vol.45, pp.6, 2010, https://doi.org/10.1002/jms.1653
  18. Dissociation mechanisms and implication for the presence of multiple conformations for peptide ions with arginine at the C-terminus: time-resolved photodissociation study vol.45, pp.7, 2010, https://doi.org/10.1002/jms.1773
  19. Characterization of a Membrane Interface for Analysis of Air Samples Using Time-of-flight Mass Spectrometry vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2791
  20. A comparative study of in- and post-source decays of peptide and preformed ions in matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Effective temperature and matrix effect vol.21, pp.11, 2010, https://doi.org/10.1016/j.jasms.2010.07.001
  21. Matrix-Assisted Variable Wavelength Laser Desorption Ionization of Peptides; Influence of the Matrix Absorption Coefficient on Expansion Cooling vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2955
  22. Dual track time‐of‐flight mass spectrometry for peptide quantification with matrix‐assisted laser desorption/ionization vol.28, pp.7, 2014, https://doi.org/10.1002/rcm.6845
  23. Acquisition of the depth profiles and reproducible mass spectra in matrix‐assisted laser desorption/ionization of inhomogeneous samples vol.29, pp.8, 2010, https://doi.org/10.1002/rcm.7157
  24. Discovery of a solvent effect preventing quantitative profiling by matrix‐assisted laser desorption/ionization and its treatment vol.30, pp.3, 2010, https://doi.org/10.1002/rcm.7452